Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 154: 109926, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39370021

RESUMEN

Phagocytic cells are pivotal for host homeostasis and infection defense, necessitating metabolic adaptations in glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS). While mammalian phagocytes shift towards glycolysis and glutaminolysis during polarization, research on fish phagocyte metabolic reprogramming is limited. To address this, the Atlantic salmon phagocytic cell line, SHK-1, serves as a valuable model. Using the Seahorse XFe96 Flux Analyzer, this study compares SHK-1 bioenergetics under glucose-restricted (L-15 medium) and glucose-supplemented (PM) conditions, providing insights into metabolic characteristics and responses to Piscirickettsia salmonis bacterium Pathogen-associated molecular patterns (PAMPs). A standardized protocol for the study of real-time changes in the metabolism study of SHK-1 in PM and L-15 media, determining oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) is shown. Exhibiting metabolic adaptations, SHK-1 cells in the PM medium have higher basal and maximal OCR and spare capacity (SRC), while those grown in the L-15 medium favor OXPHOS, showing minimal glycolytic function. Despite metabolic differences, intracellular ATP levels are comparable, highlighting the metabolic plasticity and adaptability of SHK-1 cells to various carbon sources. Exposure to PAMPs from Piscirickettsia salmonis induces a metabolic shift, increasing glycolysis and OXPHOS, influencing ATP, lactate, glutamine, and glutamate levels. These findings highlight the role of mitochondrial bioenergetics and metabolic plasticity in salmon phagocytes, offering novel nutritional strategies for host-pathogen interventions based on energy metabolism.

2.
Antioxidants (Basel) ; 13(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39061870

RESUMEN

While cytostatic chemotherapy targeting DNA is known to induce genotoxicity, leading to cell cycle arrest and cytokine secretion, the impact of these drugs on fibroblast-epithelial cancer cell communication and metabolism remains understudied. Our research focused on human breast fibroblast RMF-621 exposed to nonlethal concentrations of cisplatin and doxorubicin, revealing reduced proliferation, diminished basal and maximal mitochondrial respirations, heightened mitochondrial ROS and lactate production, and elevated MCT4 protein levels. Interestingly, RMF-621 cells enhanced glucose uptake, promoting lactate export. Breast cancer cells MCF-7 exposed to conditioned media (CM) from drug-treated stromal RMF-621 cells increased MCT1 protein levels, lactate-driven mitochondrial respiration, and a significantly high mitochondrial spare capacity for lactate. These changes occurred alongside altered mitochondrial respiration, mitochondrial membrane potential, and superoxide levels. Furthermore, CM with doxorubicin and cisplatin increased migratory capacity in MCF-7 cells, which was inhibited by MCT1 (BAY-8002), glutamate dehydrogenase (EGCG), mitochondrial pyruvate carrier (UK5099), and complex I (rotenone) inhibitors. A similar behavior was observed in T47-D and ZR-75-1 breast cancer cells. This suggests that CM induces metabolic rewiring involving elevated lactate uptake to sustain mitochondrial bioenergetics during migration. Treatment with the mitochondrial-targeting antioxidant mitoTEMPO in RMF-621 and the addition of an anti-CCL2 antibody in the CM prevented the promigratory MCF-7 phenotype. Similar effects were observed in THP1 monocyte cells, where CM increased monocyte recruitment. We propose that nonlethal concentrations of DNA-damaging drugs induce changes in the cellular environment favoring a promalignant state dependent on mitochondrial bioenergetics.

3.
Antioxidants (Basel) ; 12(4)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37107188

RESUMEN

The influence of an inflammatory microenvironment on tumorigenesis has been widely accepted. Systemic conditions that favor the onset of an inflammatory landscape predispose the progression of breast cancer. Under obesity conditions, the endocrine function of adipose tissue is one of the main determinants of the production of local and systemic inflammatory mediators. Although these mediators can stimulate tumorigenesis and recruit inflammatory cells, as macrophages, the mechanism involved remains poorly understood. In the present work, we describe that the TNFα treatment of mammary preadipocytes from human normal patients blocks adipose differentiation and promotes the generation of pro-inflammatory soluble factors. The latter stimulate the mobilization of THP-1 monocytes and MCF-7 epithelial cancer cells in an MCP1/CCL2- and mitochondrial-ROS-dependent manner. Together, these results reaffirm the contribution of an inflammatory microenvironment and mtROS in the progression of breast cancer.

4.
Pharmaceutics ; 15(5)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37242775

RESUMEN

From the venom of the Bothrops pictus snake, an endemic species from Peru, we recently have described toxins that inhibited platelet aggregation and cancer cell migration. In this work, we characterize a novel P-III class snake venom metalloproteinase, called pictolysin-III (Pic-III). It is a 62 kDa proteinase that hydrolyzes dimethyl casein, azocasein, gelatin, fibrinogen, and fibrin. The cations Mg2+ and Ca2+ enhanced its enzymatic activity, whereas Zn2+ inhibited it. In addition, EDTA and marimastat were also effective inhibitors. The amino acid sequence deduced from cDNA shows a multidomain structure that includes a proprotein, metalloproteinase, disintegrin-like, and cysteine-rich domains. Additionally, Pic-III reduces the convulxin- and thrombin-stimulated platelet aggregation and in vivo, it has hemorrhagic activity (DHM = 0.3 µg). In epithelial cell lines (MDA-MB-231 and Caco-2) and RMF-621 fibroblast, it triggers morphological changes that are accompanied by a decrease in mitochondrial respiration, glycolysis, and ATP levels, and an increase in NAD(P)H, mitochondrial ROS, and cytokine secretion. Moreover, Pic-III sensitizes to the cytotoxic BH3 mimetic drug ABT-199 (Venetoclax) in MDA-MB-231 cells. To our knowledge, Pic-III is the first SVMP reported with action on mitochondrial bioenergetics and may offer novel opportunities for promising lead compounds that inhibit platelet aggregation or ECM-cancer-cell interactions.

5.
J Exp Biol ; 208(Pt 20): 3987-95, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16215224

RESUMEN

We studied structure and function of the respiratory system in the bat Tadarida brasiliensis and compared it with those of two species of rodents, Abrothrix andinus and A. olivaceus. Tadarida brasiliensis had lower resting oxygen consumption, but higher maximum oxygen consumption and aerobic scope, than the rodents. The blood-gas barrier of the bat was thinner and its relative lung size was larger; however, alveolar surface density was similar among the three species. In consequence, T. brasiliensis has an oxygen diffusion capacity two or three times higher than that of the rodents. In Tadarida brasiliensis the characteristics of the lung were accompanied by geometrical changes in the proximal airway, such as high physical optimization as a consequence of small variations in the symmetry and the scaling ratio of the bronchial diameters. These may constitute an efficient way to save energy in respiratory mechanics and are the first report of airway adjustments to decrease entropy generation in bats.


Asunto(s)
Quirópteros/anatomía & histología , Quirópteros/fisiología , Fenómenos Fisiológicos Respiratorios , Sistema Respiratorio/anatomía & histología , Roedores/anatomía & histología , Roedores/fisiología , Animales , Consumo de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA