Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Dis ; 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35147449

RESUMEN

Bambusa pervariabilis × Dendrocalamopsis grandis is the main cultivated bamboo species used for ecological construction in the Yangtze River basin. This species has the advantages of easy reproduction, wide adaptability and strong resistance and has high economic, ecological and social benefits (Peng et al. 2020). One area of B. pervariabilis × D. grandis with basal rot disease was discovered in Renshou County, Sichuan Province, China (29°41'N, 104°11'E) in June 2020. The disease occurrence area was 68 hm2 in Renshou County, with an incidence rate of 34.8%, and 5% of the B. pervariabilis × D. grandis with basal rot disease died. The pathogen initially invaded from the first section of the base of the bamboo stalk, appearing as black to yellowish brown strips or lumps of disease spots, and rapidly developed horizontally and vertically, which caused the whole plant to wither in severe cases. Diseased tissues were collected from the base of a 4-year-old bamboo stalk with a sterile blade. 100 pieces (5 × 5 × 2 mm) of diseased tissues were sterilized with 3% NaClO for 30 s and in 75% ethanol for 90 s, rinsed three times with sterile distilled water, dried with sterile surface water on sterile filter paper, plated onto potato dextrose agar amended with streptomycin sulfate (Solarbio, 50 µg/ml), and incubated at 25 °C for 7 days with light. A total of five isolates were obtained, of which four isolates were similar in morphology. Using the method of monospore isolation (Leslie and Summerell 2006) and culturing it on PDA, the fungus produced round colonies with a diameter of approximately 8.4 mm and a surface color ranging from white to purple within 7 days at 25 °C. For identification by typical spores, the fungus was cultured on carnation leaf agar (CLA) medium at 25 °C for 7 days. The microconidia by the isolates BD2002, BD2004, BD2008 and BD2010 cultured on CLA medium were elliptical, ovoid, without septum, and measured 4.56 to 15.53 µm long × 1.36 to 6.98 µm wide (n=100). The macroconidia were rod-shaped or slightly curved, tapering apically with three to five septa, and measured 18.86 to 52.99 × 1.56 to 6.42 µm in size (n=100). According to the morphological characteristics of macroconidia and microconidia, the isolates were identified as Fusarium sp. (Leslie and Summerell 2006). For molecular identification, fungal DNA of isolates BD2002, BD2004, BD2008 and BD2010 was extracted by a fungal genomic DNA extraction kit. Polymerase chain reactions (PCRs) were performed with primers ITS1/ITS4 for the internal transcribed spacer (ITS) rDNA region (White et al. 1990), primers Bt2a/Bt2b for the ß-tubulin (TUB) region (Glass and Donaldson 1995), primers EF1F/EF2R for the translation elongation factor 1α (TEF) region (Carbone et al. 1999), primers 5f2/7cr for the RNA polymerase II genes (RPB2) region (O'Donnell et al. 2010), primers H3-1a/H3-1b for the histone H3 (HIS) region (Jacobs et al. 2010), and primers NMS1/NMS2 for the mitochondrial small subunit (mtSSU) rDNA region (Stenglein et al. 2010). Using BLASTn to search GenBank for ITS, TUB, TEF, RPB2, HIS and mtSSU sequences, all isolates showed the highest similarity with Fusarium proliferatum (Matsushima) Nirenberg. The representative isolate BD2010 showed that ITS had 99.61% similarity to F. proliferatum Z23-28 (FJ648201.1); HIS had 99.57% similarity to F. proliferatum M06A_4G_4 (KX681532.1); and the TUB, TEF, RPB2, and mtSSU sequences showed 99.67%, 99.10%, 99.06%, and 99.57% similarity, respectively, to F. proliferatum ITEM2287 (accession numbers LT841243.1, LT841245.1, LT841252.1, and LT841247.1 in GenBank). The GenBank numbers of the representative isolate BD2010 were ITS, OK325614; TUB, OK377026; TEF, OK377027; RPB2, OK377028; HIS, OK377029; and mtSSU, OK338638. To confirm the pathogenicity, thirty 4-year-old healthy bamboo plants were grown in 30 pots. Each five plants were inoculated with one isolate, and a total of twenty-five plants were inoculated with five isolates. A conidia suspension (1 × 106 conidia/ml) of the fungus was inoculated (100 µl each) into plants that had been acupunctured at the base by a sterile syringe. Five control plants were inoculated only with the same amount of sterile distilled water. The inoculation site was wrapped with wet gauze to maintain moisture. All bamboo plants were watered every seven days. The illumination conditions were 12 h light and 12 h dark. All plants were cultured in a greenhouse at 25-28 °C and 70-80% relative humidity. One month later, twenty plants inoculated with conidial suspensions of BD2002, BD2004, BD2008 and BD2010 showed the same symptoms as those observed in the field, whereas plants inoculated with the other fungus and the control treatment remained asymptomatic. The pathogenicity test was conducted three times, and the experimental results were consistent. Furthermore, the fungi were reisolated from the diseased part and were identified as F. proliferatum by morphological and molecular comparison. To our knowledge, this is the first report of basal rot disease caused by F. proliferatum on B. pervariabilis × D. grandis in China. This research is conducive to laying the foundation for the development of effective control strategies for basal rot disease in this species.

2.
J Fungi (Basel) ; 7(12)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34946984

RESUMEN

Arthrinium phaeospermum can cause branch wilting of Bambusa pervariabilis × Dendrocalamopsis grandis, causing great economic losses and ecological damage. A. phaeospermum was sequenced in sterile deionized water (CK), rice tissue (T1) and B. pervariabilis × D. grandis (T2) fluid by RNA-Seq, and the function of Ctf1ß 1 and Ctf1ß 2 was verified by gene knockout. There were 424, 471 and 396 differentially expressed genes between the T2 and CK, T2 and T1, and CK and T1 groups, respectively. Thirty DEGs had verified the change in expression by fluorescent quantitative PCR. Twenty-nine DEGs were the same as the expression level in RNA-Seq. In addition, ΔApCtf1ß 1 and ΔApCtf1ß 2 showed weaker virulence by gene knockout, and the complementary strains Ctf1ß 1 and Ctf1ß 2 showed the same virulence as the wild-type strains. Relative growth inhibition of ΔApCtf1ß 1 and ΔApCtf1ß was significantly decreased by 21.4% and 19.2%, respectively, by adding H2O2 compared to the estimates from the wild-type strain and decreased by 25% and 19.4%, respectively, by adding Congo red. The disease index of B. pervariabilis × D. grandis infected by two mutants was significantly lower than that of wild type. This suggested that Ctf1ß genes are required for the stress response and virulence of A. phaeospermum.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA