Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Brief Bioinform ; 21(1): 47-61, 2020 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-30325405

RESUMEN

Small molecule is a kind of low molecular weight organic compound with variety of biological functions. Studies have indicated that small molecules can inhibit a specific function of a multifunctional protein or disrupt protein-protein interactions and may have beneficial or detrimental effect against diseases. MicroRNAs (miRNAs) play crucial roles in cellular biology, which makes it possible to develop miRNA as diagnostics and therapeutic targets. Several drug-like compound libraries were screened successfully against different miRNAs in cellular assays further demonstrating the possibility of targeting miRNAs with small molecules. In this review, we summarized the concept and functions of small molecule and miRNAs. Especially, five aspects of miRNA functions were exhibited in detail with individual examples. In addition, four disease states that have been linked to miRNA alterations were summed up. Then, small molecules related to four important miRNAs miR-21, 122, 4644 and 27 were selected for introduction. Some important publicly accessible databases and web servers of the experimentally validated or potential small molecule-miRNA associations were discussed. Identifying small molecule targeting miRNAs has become an important goal of biomedical research. Thus, several experimental and computational models have been developed and implemented to identify novel small molecule-miRNA associations. Here, we reviewed four experimental techniques used in the past few years to search for small-molecule inhibitors of miRNAs, as well as three types of models of predicting small molecule-miRNA associations from different perspectives. Finally, we summarized the limitations of existing methods and discussed the future directions for further development of computational models.

2.
J Cell Mol Med ; 24(1): 573-587, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31747722

RESUMEN

Accumulating experimental evidence has demonstrated that microRNAs (miRNAs) have a huge impact on numerous critical biological processes and they are associated with different complex human diseases. Nevertheless, the task to predict potential miRNAs related to diseases remains difficult. In this paper, we developed a Kernel Fusion-based Regularized Least Squares for MiRNA-Disease Association prediction model (KFRLSMDA), which applied kernel fusion technique to fuse similarity matrices and then utilized regularized least squares to predict potential miRNA-disease associations. To prove the effectiveness of KFRLSMDA, we adopted leave-one-out cross-validation (LOOCV) and 5-fold cross-validation and then compared KFRLSMDA with 10 previous computational models (MaxFlow, MiRAI, MIDP, RKNNMDA, MCMDA, HGIMDA, RLSMDA, HDMP, WBSMDA and RWRMDA). Outperforming other models, KFRLSMDA achieved AUCs of 0.9246 in global LOOCV, 0.8243 in local LOOCV and average AUC of 0.9175 ± 0.0008 in 5-fold cross-validation. In addition, respectively, 96%, 100% and 90% of the top 50 potential miRNAs for breast neoplasms, colon neoplasms and oesophageal neoplasms were confirmed by experimental discoveries. We also predicted potential miRNAs related to hepatocellular cancer by removing all known related miRNAs of this cancer and 98% of the top 50 potential miRNAs were verified. Furthermore, we predicted potential miRNAs related to lymphoma using the data set in the old version of the HMDD database and 80% of the top 50 potential miRNAs were confirmed. Therefore, it can be concluded that KFRLSMDA has reliable prediction performance.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Simulación por Computador , Estudios de Asociación Genética , MicroARNs/genética , Neoplasias/genética , Neoplasias/patología , Predisposición Genética a la Enfermedad , Humanos
3.
Int J Mol Sci ; 21(5)2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32106478

RESUMEN

The central dogma of molecular biology has told that DNA sequences encode proteins through RNAs, which function as an information intermediary [...].


Asunto(s)
Simulación por Computador , Predisposición Genética a la Enfermedad , ARN no Traducido/genética , Animales , Humanos , ARN no Traducido/metabolismo
4.
Bioinformatics ; 34(24): 4256-4265, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29939227

RESUMEN

Motivation: It has been shown that microRNAs (miRNAs) play key roles in variety of biological processes associated with human diseases. In Consideration of the cost and complexity of biological experiments, computational methods for predicting potential associations between miRNAs and diseases would be an effective complement. Results: This paper presents a novel model of Inductive Matrix Completion for MiRNA-Disease Association prediction (IMCMDA). The integrated miRNA similarity and disease similarity are calculated based on miRNA functional similarity, disease semantic similarity and Gaussian interaction profile kernel similarity. The main idea is to complete the missing miRNA-disease association based on the known associations and the integrated miRNA similarity and disease similarity. IMCMDA achieves AUC of 0.8034 based on leave-one-out-cross-validation and improved previous models. In addition, IMCMDA was applied to five common human diseases in three types of case studies. In the first type, respectively, 42, 44, 45 out of top 50 predicted miRNAs of Colon Neoplasms, Kidney Neoplasms, Lymphoma were confirmed by experimental reports. In the second type of case study for new diseases without any known miRNAs, we chose Breast Neoplasms as the test example by hiding the association information between the miRNAs and Breast Neoplasms. As a result, 50 out of top 50 predicted Breast Neoplasms-related miRNAs are verified. In the third type of case study, IMCMDA was tested on HMDD V1.0 to assess the robustness of IMCMDA, 49 out of top 50 predicted Esophageal Neoplasms-related miRNAs are verified. Availability and implementation: The code and dataset of IMCMDA are freely available at https://github.com/IMCMDAsourcecode/IMCMDA. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Predisposición Genética a la Enfermedad , MicroARNs , Modelos Genéticos , Algoritmos , Neoplasias del Colon/genética , Neoplasias Esofágicas/genética , Humanos , MicroARNs/genética
5.
J Cell Mol Med ; 22(3): 1548-1561, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29272076

RESUMEN

MicroRNAs (miRNAs) have been confirmed to be closely related to various human complex diseases by many experimental studies. It is necessary and valuable to develop powerful and effective computational models to predict potential associations between miRNAs and diseases. In this work, we presented a prediction model of Graphlet Interaction for MiRNA-Disease Association prediction (GIMDA) by integrating the disease semantic similarity, miRNA functional similarity, Gaussian interaction profile kernel similarity and the experimentally confirmed miRNA-disease associations. The related score of a miRNA to a disease was calculated by measuring the graphlet interactions between two miRNAs or two diseases. The novelty of GIMDA lies in that we used graphlet interaction to analyse the complex relationships between two nodes in a graph. The AUCs of GIMDA in global and local leave-one-out cross-validation (LOOCV) turned out to be 0.9006 and 0.8455, respectively. The average result of five-fold cross-validation reached to 0.8927 ± 0.0012. In case study for colon neoplasms, kidney neoplasms and prostate neoplasms based on the database of HMDD V2.0, 45, 45, 41 of the top 50 potential miRNAs predicted by GIMDA were validated by dbDEMC and miR2Disease. Additionally, in the case study of new diseases without any known associated miRNAs and the case study of predicting potential miRNA-disease associations using HMDD V1.0, there were also high percentages of top 50 miRNAs verified by the experimental literatures.


Asunto(s)
Neoplasias del Colon/genética , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Neoplasias Renales/genética , MicroARNs/genética , Modelos Estadísticos , Neoplasias de la Próstata/genética , Anciano , Algoritmos , Área Bajo la Curva , Neoplasias del Colon/diagnóstico , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Biología Computacional/métodos , Humanos , Neoplasias Renales/diagnóstico , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Masculino , MicroARNs/clasificación , MicroARNs/metabolismo , Persona de Mediana Edad , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología
6.
Mol Genet Genomics ; 293(4): 983-995, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29687157

RESUMEN

Recently, accumulating evidences have shown that microRNAs (miRNAs) could play key roles in the development and progression of multiple important human diseases. Nonetheless, due to the shortcoming of being expensive and time-consuming existing in experimental approaches, computational methods are needed for the prediction of potential miRNA-disease associations. In our study, we proposed a computational model named Heterogeneous Network-based MiRNA-Disease Association prediction (HNMDA) for the latent miRNA-disease association prediction by integrating known miRNA-disease associations, miRNA functional similarity, disease semantic similarity and Gaussian interaction profile kernel similarity. The Gaussian interaction profile kernel similarity can make up for the shortages of the traditional similarity calculation methods. Furthermore, we applied a heterogeneous network-based method, in which we first implemented a network diffusion algorithm of random walk with restart, and then we applied a method to find the optimal projection from miRNA space to disease space, which enabled the prediction of new miRNA-disease associations that are not experimentally confirmed so far. In the cross-validation, HNMDA obtained the AUC of 0.8394, which achieved improvement compared with previous methods. In the case studies of breast neoplasms, esophageal neoplasms and kidney neoplasms based on known miRNA-disease associations in the HMDD V2.0 database, there were 82, 76 and 84% of top 50 predicted related miRNAs that were confirmed to have associations with these three diseases, respectively. In the further case studies for new diseases without any known related miRNAs and the case using HMDD V1.0 database as known associations, there were also high ratio of the predicted miRNAs confirmed by experimental reports.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Enfermedad/genética , Redes Reguladoras de Genes , MicroARNs/genética , Modelos Genéticos , Humanos , Valor Predictivo de las Pruebas
7.
Brief Funct Genomics ; 18(1): 58-82, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30247501

RESUMEN

From transcriptional noise to dark matter of biology, the rapidly changing view of long non-coding RNA (lncRNA) leads to deep understanding of human complex diseases induced by abnormal expression of lncRNAs. There is urgent need to discern potential functional roles of lncRNAs for further study of pathology, diagnosis, therapy, prognosis, prevention of human complex disease and disease biomarker detection at lncRNA level. Computational models are anticipated to be an effective way to combine current related databases for predicting most potential lncRNA functions and calculating lncRNA functional similarity on the large scale. In this review, we firstly illustrated the biological function of lncRNAs from five biological processes and briefly depicted the relationship between mutations or dysfunctions of lncRNAs and human complex diseases involving cancers, nervous system disorders and others. Then, 17 publicly available lncRNA function-related databases containing four types of functional information content were introduced. Based on these databases, dozens of developed computational models are emerging to help characterize the functional roles of lncRNAs. We therefore systematically described and classified both 16 lncRNA function prediction models and 9 lncRNA functional similarity calculation models into 8 types for highlighting their core algorithm and process. Finally, we concluded with discussions about the advantages and limitations of these computational models and future directions of lncRNA function prediction and functional similarity calculation. We believe that constructing systematic functional annotation systems is essential to strengthen the prediction accuracy of computational models, which will accelerate the identification process of novel lncRNA functions in the future.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Simulación por Computador , Enfermedad/genética , Redes Reguladoras de Genes , ARN Largo no Codificante/genética , Humanos
8.
Mol Ther Nucleic Acids ; 17: 164-174, 2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31265947

RESUMEN

Precision medicine has become a novel and rising concept, which depends much on the identification of individual genomic signatures for different patients. The cancer cell lines could reflect the "omic" diversity of primary tumors, based on which many works have been carried out to study the cancer biology and drug discovery both in experimental and computational aspects. In this work, we presented a novel method to utilize weighted graph regularized matrix factorization (WGRMF) for inferring anticancer drug response in cell lines. We constructed a p-nearest neighbor graph to sparsify drug similarity matrix and cell line similarity matrix, respectively. Using the sparsified matrices in the graph regularization terms, we performed matrix factorization to generate the latent matrices for drug and cell line. The graph regularization terms including neighbor information could help to exclude the noisy ingredient and improve the prediction accuracy. The 10-fold cross-validation was implemented, and the Pearson correlation coefficient (PCC), root-mean-square error (RMSE), PCCsr, and RMSEsr averaged over all drugs were calculated to evaluate the performance of WGRMF. The results on the Genomics of Drug Sensitivity in Cancer (GDSC) dataset are 0.64 ± 0.16, 1.37 ± 0.35, 0.73 ± 0.14, and 1.71 ± 0.44 for PCC, RMSE, PCCsr, and RMSEsr in turn. And for the Cancer Cell Line Encyclopedia (CCLE) dataset, WGRMF got results of 0.72 ± 0.09, 0.56 ± 0.19, 0.79 ± 0.07, and 0.69 ± 0.19, respectively. The results showed the superiority of WGRMF compared with previous methods. Besides, based on the prediction results using the GDSC dataset, three types of case studies were carried out. The results from both cross-validation and case studies have shown the effectiveness of WGRMF on the prediction of drug response in cell lines.

9.
Front Pharmacol ; 9: 1152, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30374302

RESUMEN

MicroRNAs (miRNAs) have been proved to be targeted by the small molecules recently, which made using small molecules to target miRNAs become a possible therapy for human diseases. Therefore, it is very meaningful to investigate the relationships between small molecules and miRNAs, which is still yet in the newly-developing stage. In this paper, we presented a prediction model of Graphlet Interaction based inference for Small Molecule-MiRNA Association prediction (GISMMA) by combining small molecule similarity network, miRNA similarity network and known small molecule-miRNA association network. This model described the complex relationship between two small molecules or between two miRNAs using graphlet interaction which consists of 28 isomers. The association score between a small molecule and a miRNA was calculated based on counting the numbers of graphlet interaction throughout the small molecule similarity network and the miRNA similarity network, respectively. Global and two types of local leave-one-out cross validation (LOOCV) as well as five-fold cross validation were implemented in two datasets to evaluate GISMMA. For Dataset 1, the AUCs are 0.9291 for global LOOCV, 0.9505, and 0.7702 for two local LOOCVs, 0.9263 ± 0.0026 for five-fold cross validation; for Dataset 2, the AUCs are 0.8203, 0.8640, 0.6591, and 0.8554 ± 0.0063, in turn. In case study for small molecules, 5-Fluorouracil, 17ß-Estradiol and 5-Aza-2'-deoxycytidine, the numbers of top 50 miRNAs predicted by GISMMA and validated to be related to these three small molecules by experimental literatures are in turn 30, 29, and 25. Based on the results from cross validations and case studies, it is easy to realize the excellent performance of GISMMA.

10.
Front Physiol ; 9: 92, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29515453

RESUMEN

Nowadays, as more and more associations between microRNAs (miRNAs) and diseases have been discovered, miRNA has gradually become a hot topic in the biological field. Because of the high consumption of time and money on carrying out biological experiments, computational method which can help scientists choose the most likely associations between miRNAs and diseases for further experimental studies is desperately needed. In this study, we proposed a method of Graph Regression for MiRNA-Disease Association prediction (GRMDA) which combines known miRNA-disease associations, miRNA functional similarity, disease semantic similarity, and Gaussian interaction profile kernel similarity. We used Gaussian interaction profile kernel similarity to supplement the shortage of miRNA functional similarity and disease semantic similarity. Furthermore, the graph regression was synchronously performed in three latent spaces, including association space, miRNA similarity space, and disease similarity space, by using two matrix factorization approaches called Singular Value Decomposition and Partial Least-Squares to extract important related attributes and filter the noise. In the leave-one-out cross validation and five-fold cross validation, GRMDA obtained the AUCs of 0.8272 and 0.8080 ± 0.0024, respectively. Thus, its performance is better than some previous models. In the case study of Lymphoma using the recorded miRNA-disease associations in HMDD V2.0 database, 88% of top 50 predicted miRNAs were verified by experimental literatures. In order to test the performance of GRMDA on new diseases with no known related miRNAs, we took Breast Neoplasms as an example by regarding all the known related miRNAs as unknown ones. We found that 100% of top 50 predicted miRNAs were verified. Moreover, 84% of top 50 predicted miRNAs in case study for Esophageal Neoplasms based on HMDD V1.0 were verified to have known associations. In conclusion, GRMDA is an effective and practical method for miRNA-disease association prediction.

11.
Front Pharmacol ; 9: 1017, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30258362

RESUMEN

Individualized therapies ask for the most effective regimen for each patient, while the patients' response may differ from each other. However, it is impossible to clinically evaluate each patient's response due to the large population. Human cell lines have harbored most of the same genetic changes found in patients' tumors, thus are widely used to help understand initial responses of drugs. Based on the more credible assumption that similar cell lines and similar drugs exhibit similar responses, we formulated drug response prediction as a recommender system problem, and then adopted a hybrid interpolation weighted collaborative filtering (HIWCF) method to predict anti-cancer drug responses of cell lines by incorporating cell line similarity and drug similarity shown from gene expression profiles, drug chemical structure as well as drug response similarity. Specifically, we estimated the baseline based on the available responses and shrunk the similarity score for each cell line pair as well as each drug pair. The similarity scores were then shrunk and weighted by the correlation coefficients drawn from the know response between each pair. Before used to find the K most similar neighbors for further prediction, they went through the case amplification strategy to emphasize high similarity and neglect low similarity. In the last step for prediction, cell line-oriented and drug-oriented collaborative filtering models were carried out, and the average of predicted values from both models was used as the final predicted sensitivity. Through 10-fold cross validation, this approach was shown to reach accurate and reproducible outcome for those missing drug sensitivities. We also found that the drug response similarity between cell lines or drugs may play important role in the prediction. Finally, we discussed the biological outcomes based on the newly predicted response values in GDSC dataset.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA