RESUMEN
Demonstrative words are one of the most important ways of establishing reference in conversation. This work describes Spanish-speaking children's demonstrative production between ages 2 to 10 using data from the CHILDES corpora. Results indicate that children feature all demonstratives in their lexicon - however, the distal term is scarce throughout development. Moreover, patterns of demonstrative use are not adult-like at age 10. We compare adult and child data to conclude that children's development of demonstrative production is largely protracted. Adult use of the distal demonstrative is higher than in young children, although both older children and adults use the medial term ese more than any other demonstratives. In contrast, younger children use proximals relatively more frequently than older children and adults. Suggestions for future research and theoretical implications for the Spanish demonstrative system are discussed.
RESUMEN
The extent to which languages share properties reflecting the non-linguistic constraints of the speakers who speak them is key to the debate regarding the relationship between language and cognition. A critical case is spatial communication, where it has been argued that semantic universals should exist, if anywhere. Here, using an experimental paradigm able to separate variation within a language from variation between languages, we tested the use of spatial demonstratives-the most fundamental and frequent spatial terms across languages. In n = 874 speakers across 29 languages, we show that speakers of all tested languages use spatial demonstratives as a function of being able to reach or act on an object being referred to. In some languages, the position of the addressee is also relevant in selecting between demonstrative forms. Commonalities and differences across languages in spatial communication can be understood in terms of universal constraints on action shaping spatial language and cognition.
Asunto(s)
Lenguaje , Semántica , Humanos , CogniciónRESUMEN
The memory game paradigm is a behavioral procedure to explore the relationship between language, spatial memory, and object knowledge. Using two different versions of the paradigm, spatial language use and memory for object location are tested under different, experimentally manipulated conditions. This allows us to tease apart proposed models explaining the influence of object knowledge on spatial language (e.g., spatial demonstratives), and spatial memory, as well as understanding the parameters that affect demonstrative choice and spatial memory more broadly. Key to the development of the method was the need to collect data on language use (e.g., spatial demonstratives: "this/that") and spatial memory data under strictly controlled conditions, while retaining a degree of ecological validity. The language version (section 3.1) of the memory game tests how conditions affect language use. Participants refer verbally to objects placed at different locations (e.g., using spatial demonstratives: "this/that red circle"). Different parameters can be experimentally manipulated: the distance from the participant, the position of a conspecific, and for example whether the participant owns, knows, or sees the object while referring to it. The same parameters can be manipulated in the memory version of the memory game (section 3.2). This version tests the effects of the different conditions on object-location memory. Following object placement, participants get 10 seconds to memorize the object's location. After the object and location cues are removed, participants verbally direct the experimenter to move a stick to indicate where the object was. The difference between the memorized and the actual location shows the direction and strength of the memory error, allowing comparisons between the influences of the respective parameters.
Asunto(s)
Cognición/fisiología , Lenguaje , Percepción Espacial/fisiología , Memoria Espacial/fisiología , Femenino , Humanos , MasculinoRESUMEN
To what extent is the choice of what to say driven by seemingly irrelevant cues in the visual world being described? Among such cues, how does prior description affect how we process spatial scenes? When people describe where objects are located their use of spatial language is often associated with a choice of reference frame. Two experiments employing between-participants designs (N = 490) examined the effects of visual cueing and previous description on reference frame choice as reflected in spatial prepositions (in front of, to the left of, etc.) to describe pictures of object pairs. Experiment 1 examined the effects of visual and linguistic cues on spatial description choice through movement of object(s) in spatial scenes, showing sizeable effects of visual cueing on reference frame choice. Experiment 2 monitored eye movements of participants following a linguistic example description, revealing two findings: eye movement "signatures" associated with distinct reference frames as expressed in language, and transfer of these eye movement patterns just prior to spatial description for different (later) picture descriptions. Both verbal description and visual cueing similarly influence language production choice through manipulation of visual attention, suggesting a unified theory of constraints affecting spatial language choice.
RESUMEN
In three experiments, we investigated the influence of two types of language on memory for object location: demonstratives (this, that) and possessives (my, your). Participants first read instructions containing demonstratives/possessives to place objects at different locations, and then had to recall those object locations (following object removal). Experiments 1 and 2 tested contrasting predictions of two possible accounts of language on object location memory: the Expectation Model (Coventry, Griffiths, & Hamilton, 2014) and the congruence account (Bonfiglioli, Finocchiaro, Gesierich, Rositani, & Vescovi, 2009). In Experiment 3, the role of attention allocation as a possible mechanism was investigated. Results across all three experiments show striking effects of language on object location memory, with the pattern of data supporting the Expectation Model. In this model, the expected location cued by language and the actual location are concatenated leading to (mis)memory for object location, consistent with models of predictive coding (Bar, 2009; Friston, 2003).