Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Biochemistry ; 59(45): 4321-4335, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33153264

RESUMEN

ApoB lipoproteins (apo B-Lp) are produced in hepatocytes, and their secretion requires the cargo receptor sortilin. We examined the secretion of apo B-Lp-containing very low-density lipoprotein (VLDL), an LDL progenitor. Sortilin also regulates the trafficking of the subtilase PCSK9, which when secreted binds the LDL receptor (LDLR), resulting in its endocytosis and destruction at the lysosome. We show that the site 2 binding compound (cpd984) has multiple effects in hepatocytes, including (1) enhanced Apo-Lp secretion, (2) increased cellular PCSK9 retention, and (3) augmented levels of LDLR at the plasma membrane. We postulate that cpd984 enhances apo B-Lp secretion in part through binding the lipid phosphatidylinositol 3,4,5-trisphosphate (PIP3), which is present at higher levels on circulating VLDL form fed rats relative to after fasting. We attribute the enhanced VLDL secretion to its increased binding affinity for sortilin site 1 induced by cpd984 binding site 2. This hinders PCSK9 binding and secretion, which would subsequently prevent its binding to LDLR leading to its degradation. This suggests that site 2 is an allosteric regulator of site 1 binding. This effect is not limited to VLDL, as cpd984 augments binding of the neuropeptide neurotensin (NT) to sortilin site 1. Molecular dynamics simulations demonstrate that the C-terminus of NT (Ct-NT) stably binds site 1 through an electrostatic interaction. This was bolstered by the ability of Ct-NT to disrupt lower-affinity interactions between sortilin and the site 1 ligand PIP3. Together, these data show that binding cargo at sortilin site 1 is allosterically regulated through site 2 binding, with important ramifications for cellular lipid homeostasis involving proteins such as PCSK9 and LDLR.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Hepatocitos/metabolismo , Lipoproteínas VLDL/metabolismo , Proproteína Convertasa 9/metabolismo , Receptores de LDL/metabolismo , Regulación Alostérica , Animales , Sitios de Unión , Humanos , Simulación de Dinámica Molecular , Conformación Proteica , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley
2.
J Biol Chem ; 294(46): 17168-17185, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31515268

RESUMEN

The homeostasis of most organelles requires membrane fusion mediated by soluble N -ethylmaleimide-sensitive factor (NSF) attachment protein receptors (SNAREs). SNAREs undergo cycles of activation and deactivation as membranes move through the fusion cycle. At the top of the cycle, inactive cis-SNARE complexes on a single membrane are activated, or primed, by the hexameric ATPase associated with the diverse cellular activities (AAA+) protein, N-ethylmaleimide-sensitive factor (NSF/Sec18), and its co-chaperone α-SNAP/Sec17. Sec18-mediated ATP hydrolysis drives the mechanical disassembly of SNAREs into individual coils, permitting a new cycle of fusion. Previously, we found that Sec18 monomers are sequestered away from SNAREs by binding phosphatidic acid (PA). Sec18 is released from the membrane when PA is hydrolyzed to diacylglycerol by the PA phosphatase Pah1. Although PA can inhibit SNARE priming, it binds other proteins and thus cannot be used as a specific tool to further probe Sec18 activity. Here, we report the discovery of a small-molecule compound, we call IPA (inhibitor of priming activity), that binds Sec18 with high affinity and blocks SNARE activation. We observed that IPA blocks SNARE priming and competes for PA binding to Sec18. Molecular dynamics simulations revealed that IPA induces a more rigid NSF/Sec18 conformation, which potentially disables the flexibility required for Sec18 to bind to PA or to activate SNAREs. We also show that IPA more potently and specifically inhibits NSF/Sec18 activity than does N-ethylmaleimide, requiring the administration of only low micromolar concentrations of IPA, demonstrating that this compound could help to further elucidate SNARE-priming dynamics.


Asunto(s)
Adenosina Trifosfatasas/genética , Etilmaleimida/metabolismo , Ácidos Fosfatidicos/química , Proteínas de Saccharomyces cerevisiae/genética , Bibliotecas de Moléculas Pequeñas/química , Proteínas de Transporte Vesicular/genética , ATPasas Asociadas con Actividades Celulares Diversas/química , ATPasas Asociadas con Actividades Celulares Diversas/genética , Adenosina Trifosfatasas/química , Fusión de Membrana/efectos de los fármacos , Fusión de Membrana/genética , Lípidos de la Membrana/química , Lípidos de la Membrana/genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Simulación de Dinámica Molecular , Proteínas Sensibles a N-Etilmaleimida/química , Proteínas Sensibles a N-Etilmaleimida/genética , Ácidos Fosfatidicos/antagonistas & inhibidores , Proteínas SNARE/química , Proteínas SNARE/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/química , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética , Vacuolas/genética , Proteínas de Transporte Vesicular/química
4.
J Chem Inf Model ; 57(2): 335-344, 2017 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-28151650

RESUMEN

Calcium is involved in important intracellular processes, such as intracellular signaling from cell membrane receptors to the nucleus. Typically, calcium levels are kept at less than 100 nM in the nucleus and cytosol, but some calcium is stored in the endoplasmic reticulum (ER) lumen for rapid release to activate intracellular calcium-dependent functions. Stromal interacting molecule 1 (STIM1) plays a critical role in early sensing of changes in the ER's calcium level, especially when there is a sudden release of stored calcium from the ER. Inactive STIM1, which has a bound calcium ion, is activated upon ion release. Following activation of STIM1, there is STIM1-assisted initiation of extracellular calcium entry through channels in the cell membrane. This extracellular calcium entering the cell then amplifies intracellular calcium-dependent actions. At the end of the process, ER levels of stored calcium are reestablished. The main focus of this work was to study the conformational changes accompanying homo- or heterodimerization of STIM1. For this purpose, the ER luminal portion of STIM1 (residues 58-236), which includes the sterile alpha motif (SAM) domain plus the calcium-binding EF-hand domains 1 and 2 attached to the STIM1 transmembrane region (TM), was modeled and embedded in a virtual membrane. Next, molecular dynamics simulations were performed to study the conformational changes that take place during STIM1 activation and subsequent protein-protein interactions. Indeed, the simulations revealed exposure of residues in the EF-hand domains, which may be important for dimerization steps. Altogether, understanding conformational changes in STIM1 can help in drug discovery when targeting this key protein in intracellular calcium functions.


Asunto(s)
Calcio/farmacología , Membrana Celular/metabolismo , Simulación de Dinámica Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Molécula de Interacción Estromal 1/química , Molécula de Interacción Estromal 1/metabolismo , Humanos , Dominios Proteicos/efectos de los fármacos
5.
Biochem Biophys Res Commun ; 479(3): 551-556, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27666481

RESUMEN

Sortilin is a multi-ligand sorting receptor that interacts with B100-containing VLDL and LDL as well as other ligands including neurotensin (NT). The current study investigates the hypothesis that phosphatidylinositol (3,4,5)-trisphosphate (PIP3) generated downstream of insulin action can directly bind to sortilin. NT binds to sortilin at a well characterized site via its carboxy terminus (C-term). Using a crystal structure of human sortilin (hsortilin), PIP3 is predicted to bind at this C-term site. Binding of PIP3 to hsortilin is demonstrated using surface plasmon resonance (SPR) flowing PIP3 nanodiscs over immobilized hsortilin. Studies were performed using SPR where dibutanoyl PIP3 is shown to compete with NT for sortilin binding. Rat VLDL and LDL were evaluated for PIP3 content immunologically using monoclonal antibodies directed against PIP3. Rat plasma VLDL contained three times more immunoreactive PIP3 than LDL per µg of protein. Because VLDL contains additional ligands that bind sortilin, to distinguish specific PIP3 binding, we used PIP3 liposomes. Liposome floatation assays were used to demonstrate PIP3 liposome binding to sortilin. Using SPR and immobilized hsortilin, the C-term NT tetrapeptide (P-Y-I-L) is shown to bind to hsortilin. A compound (cpd984) was identified with strong theoretical binding to the site on sortilin involved in NT N-terminal binding. When cpd984 is co-incubated with the tetrapeptide, the affinity of binding to sortilin is increased. Similarly, the affinity of PIP3 liposome binding increased in the presence of cpd984. Overall, results demonstrate that sortilin is a PIP3 binding protein with binding likely to occur at the C-term NT binding site. The presence of multiple ligands on B100-containing lipoproteins, VLDL and LDL, raises the interesting possibility for increased interaction with sortilin based on the presence of PIP3.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/química , Lipoproteínas VLDL/química , Neurotensina/química , Fosfatos de Fosfatidilinositol/química , Animales , Sitios de Unión , Simulación por Computador , Humanos , Lipoproteínas VLDL/sangre , Liposomas/química , Fosfatidilinositoles/química , Unión Proteica , Dominios Proteicos , Ratas , Ratas Sprague-Dawley , Resonancia por Plasmón de Superficie
6.
Biochem Biophys Res Commun ; 478(2): 546-52, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27495870

RESUMEN

Studies examining the relationship between cellular sortilin and VLDL-B100 secretion demonstrate inconsistent results. Current studies explore the possibility that discrepancies may be related to insulin sensitivity. McArdle RH7777 cells (McA cells) cultured under serum enriched conditions lose sensitivity to insulin. Following incubation in serum-free DMEM containing 1% BSA, McA cells become insulin responsive and demonstrate reduced apo B secretion. Current studies indicate that insulin sensitive McA cells express lower cellular sortilin that corresponds with reduction in VLDL-B100 secretion without changes in mRNA of either sortilin or apo B. When sortilin expression is further reduced by siRNA knockdown (KD), there are additional decreases in VLDL-B100 secretion. A crystal structure of human sortilin (hsortilin) identifies two binding sites on the luminal domain for the N- and C-termini of neurotensin (NT). A small organic compound (cpd984) was identified that has strong theoretical binding to the N-terminal site. Both cpd984 and NT bind hsortilin by surface plasmon resonance. In incubations with insulin sensitive McA cells, cpd984 was shown to enhance VLDL-B100 secretion at each level of sortilin KD suggesting cpd984 acted through sortilin in mediating its effect. Current results support a role for sortilin to facilitate VLDL-B100 secretion which is limited to insulin sensitive McA cells. Inconsistent reports of the relationship between VLDL-B100 secretion and sortilin in previous studies may relate to differing functions of sortilin in VLDL-B100 secretion depending upon insulin sensitivity.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Apolipoproteína B-100/metabolismo , Resistencia a la Insulina , Insulina/metabolismo , Lipoproteínas VLDL/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Sitios de Unión , Línea Celular , Técnicas de Silenciamiento del Gen , Humanos , Simulación del Acoplamiento Molecular , Ratas Sprague-Dawley
7.
Bioorg Med Chem Lett ; 26(15): 3826-9, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27311892

RESUMEN

It has been found that tumor cells and tissues, compared to normal cells, have higher levels of copper and possibly other metal ions. This presents a potential vulnerability of tumor cells that can serve as a physiological difference between cancer cells and normal cells and allows design of compounds that selectively target tumor cells while sparing normal cells. Recently we have identified compounds that have potential to inhibit the proteasome in tumor cells and induce cell death by mobilizing endogenous tumor copper resulting in in cellulo activation of the compound. These compounds hence act as pro-drugs, becoming active drugs in tumor cells with high copper content but remaining essentially inactive in normal cells, thereby greatly reducing adverse effects in patients. Such use would be of significant benefit in early detection and treatment of cancers, in particular, aggressive cancers such as pancreatic cancer which is usually not detected until it has reached an advanced stage. Six compounds were identified following virtual screening of the NCI Diversity Set with our proteasome computer model followed by confirmation with a biochemical assay that showed significant inhibition of the proteasome by the compounds in the presence of copper ions. In a dose response assay, NSC 37408 (6,7-dihydroxy-1-benzofuran-3-one), our best compound, exhibited an IC50 of 3µM in the presence of 100nM copper.


Asunto(s)
Antineoplásicos/farmacología , Cobre/farmacología , Compuestos Organometálicos/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cobre/química , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Inhibidores de Proteasoma/síntesis química , Inhibidores de Proteasoma/química , Relación Estructura-Actividad
8.
J Chem Inf Model ; 53(5): 1138-56, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23581389

RESUMEN

FabH (Fatty acid biosynthesis, enzyme H, also referred to as ß-ketoacyl-ACP-synthase III) is a key condensing enzyme in the type II fatty acid synthesis (FAS) system. The FAS pathway in bacteria is essential for growth and survival and vastly differs from the human FAS pathway. Enzymes involved in this pathway have arisen as promising biomolecular targets for discovery of new antibacterial drugs. However, currently there are no clinical drugs that selectively target FabH, and known inhibitors of FabH all act within the active site. FabH exerts its catalytic function as a dimer, which could potentially be exploited in developing new strategies for inhibitor design. The aim of this study was to elucidate structural details of the dimer interface region by means of computational modeling, including molecular dynamics (MD) simulations, in order to derive information for the structure-based design of new FabH inhibitors. The dimer interface region was analyzed by MD simulations, trajectory snapshots were collected for further analyses, and docking studies were performed with potential small molecule disruptors. Alanine mutation and docking studies strongly suggest that the dimer interface could be a potential target for anti-infection drug discovery.


Asunto(s)
Acetiltransferasas/química , Acetiltransferasas/metabolismo , Alanina , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutagénesis , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa , Acetiltransferasas/antagonistas & inhibidores , Acetiltransferasas/genética , Sitios de Unión , Dominio Catalítico , Análisis por Conglomerados , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/genética , Acido Graso Sintasa Tipo II/antagonistas & inhibidores , Acido Graso Sintasa Tipo II/química , Acido Graso Sintasa Tipo II/genética , Acido Graso Sintasa Tipo II/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Reproducibilidad de los Resultados , Solventes/química , Interfaz Usuario-Computador
9.
J Chem Inf Model ; 52(8): 2192-203, 2012 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-22747098

RESUMEN

Computational methods involving virtual screening could potentially be employed to discover new biomolecular targets for an individual molecule of interest (MOI). However, existing scoring functions may not accurately differentiate proteins to which the MOI binds from a larger set of macromolecules in a protein structural database. An MOI will most likely have varying degrees of predicted binding affinities to many protein targets. However, correctly interpreting a docking score as a hit for the MOI docked to any individual protein can be problematic. In our method, which we term "Virtual Target Screening (VTS)", a set of small drug-like molecules are docked against each structure in the protein library to produce benchmark statistics. This calibration provides a reference for each protein so that hits can be identified for an MOI. VTS can then be used as tool for: drug repositioning (repurposing), specificity and toxicity testing, identifying potential metabolites, probing protein structures for allosteric sites, and testing focused libraries (collection of MOIs with similar chemotypes) for selectivity. To validate our VTS method, twenty kinase inhibitors were docked to a collection of calibrated protein structures. Here, we report our results where VTS predicted protein kinases as hits in preference to other proteins in our database. Concurrently, a graphical interface for VTS was developed.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Interfaz Usuario-Computador , Línea Celular Tumoral , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 2 Dependiente de la Ciclina/química , Quinasa 2 Dependiente de la Ciclina/metabolismo , Bases de Datos de Proteínas , Aprobación de Drogas , Humanos , Modelos Moleculares , Conformación Proteica , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo , Proteínas Quinasas/química , Reproducibilidad de los Resultados , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología
10.
Bioorg Med Chem Lett ; 21(2): 730-3, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21193311

RESUMEN

Shp2 protein tyrosine phosphate (PTP) is a novel target for anticancer drug discovery. We identified estramustine phosphate as a Shp2 PTP inhibitor from the National Cancer Institute Approved Oncology Drug set. A focused structure-activity relationship study indicated that the 17-phosphate group is required for the Shp2 PTP inhibitor activity of estramustine phosphate. A search for estramustine phosphate analogs led to identification of two triterpenoids, enoxolone, and celastrol, having Shp2 PTP inhibitor activity. With the previously reported PTP1B inhibitor trodusquemine, our study reveals steroids and triterpenoids with negatively charged phosphate, carboxylate, or sulfonate groups as novel pharmacophores of selective PTP inhibitors.


Asunto(s)
Antineoplásicos Hormonales/química , Antineoplásicos Hormonales/farmacología , Estramustina/análogos & derivados , Estramustina/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Humanos , Modelos Moleculares , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/química , Relación Estructura-Actividad , Triterpenos/química , Triterpenos/farmacología
11.
Pept Sci (Hoboken) ; 113(3): e24199, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-35859761

RESUMEN

HYD1 is an all D-amino acid linear 10-mer peptide that was discovered by one-bead-one-compound screening. HYD1 has five hydrophobic amino acids flanked by polar amino acids. Alanine scanning studies showed that alternating hydrophobic amino acid residues and N- and C-terminal lysine side chains were contributors to the biological activity of the linear 10-mer analogs. This observation led us to hypothesize that display of the hydrophobic pentapeptide sequence of HYD1 in a cyclic beta-hairpin-like scaffold could lead to better bioavailability and biological activity. An amphipathic pentapeptide sequence was used to form an antiparallel strand and those strands were linked via dipeptide-like sequences selected to promote ß-turns. Early cyclic analogs were more active but otherwise mimicked the biological activity of the linear HYD1 peptide. The cyclic peptidomimetics were synthesized using standard Fmoc solid phase synthesis to form linear peptides, followed by solution phase or on-resin cyclization. SAR studies were carried out with an aim to increase the potency of these drug candidates for the killing of multiple myeloma cells in vitro. The solution structures of 1, 5, and 10 were elucidated using NMR spectroscopy. 1H NMR and 2D TOCSY studies of these peptides revealed a downfield Hα proton chemical shift and 2D NOE spectral analysis consistent with a ß-hairpin-like structure.

12.
J Org Chem ; 75(12): 4288-91, 2010 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-20469918

RESUMEN

A facile iterative synthesis of 2,5-terpyrimidinylenes that are structurally analogous to alpha-helix mimics is presented. Condensation of amidines with readily prepared alpha,beta-unsaturated alpha-cyanoketones gives 5-cyano-substituted pyrimidines. Iterative transformation of the 5-cyano group into an amidine allows synthesis of 2,5-terpyrimidinylenes with variable groups at the 4-, 4'-, and 4''-positions. These compounds are designed to mimic the i, i + 4, and i + 7 sites of an alpha-helix.


Asunto(s)
Amidinas/química , Biomimética , Cianocetona/química , Modelos Moleculares , Pirimidinas/química , Estructura Molecular , Estructura Secundaria de Proteína
13.
Bioorg Med Chem ; 18(15): 5576-92, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20621484

RESUMEN

Screening of the NCI Diversity Set-1 identified PI-083 (NSC-45382) a proteasome inhibitor selective for cancer over normal cells. Focused libraries of novel compounds based on PI-083 chloronaphthoquinone and sulfonamide moieties were synthesized to gain a better understanding of the structure-activity relationship responsible for chymotrypsin-like proteasome inhibitory activity. This led to the demonstration that the chloronaphthoquinone and the sulfonamide moieties are critical for inhibitory activity. The pyridyl group in PI-083 can be replaced with other heterocyclic groups without significant loss of activity. Molecular modeling studies were also performed to explore the detailed interactions of PI-083 and its derivatives with the beta5 and beta6 subunits of the 20S proteasome. The refined model showed an H-bond interaction between the Asp-114 and the sulfonamide moiety of the PI-083 in the beta6 subunit.


Asunto(s)
Naftoquinonas/química , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasoma , Antraciclinas/química , Sitios de Unión , Simulación por Computador , Enlace de Hidrógeno , Naftoquinonas/síntesis química , Naftoquinonas/farmacología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/metabolismo , Relación Estructura-Actividad , Sulfonamidas/química
14.
Biochemistry ; 48(27): 6423-30, 2009 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-19527050

RESUMEN

S-Adenosylmethionine decarboxylase (AdoMetDC) is a key enzyme in the polyamine biosynthetic pathway. Inhibition of this pathway and subsequent depletion of polyamine levels is a viable strategy for cancer chemotherapy and for the treatment of parasitic diseases. Substrate analogue inhibitors display an absolute requirement for a positive charge at the position equivalent to the sulfonium of S-adenosylmethionine. We investigated the ligand specificity of AdoMetDC through crystallography, quantum chemical calculations, and stopped-flow experiments. We determined crystal structures of the enzyme cocrystallized with 5'-deoxy-5'-dimethylthioadenosine and 5'-deoxy-5'-(N-dimethyl)amino-8-methyladenosine. The crystal structures revealed a favorable cation-pi interaction between the ligand and the aromatic side chains of Phe7 and Phe223. The estimated stabilization from this interaction is 4.5 kcal/mol as determined by quantum chemical calculations. Stopped-flow kinetic experiments showed that the rate of the substrate binding to the enzyme greatly depends on Phe7 and Phe223, thus supporting the importance of the cation-pi interaction.


Asunto(s)
Adenosilmetionina Descarboxilasa/metabolismo , Compuestos de Sulfonio/metabolismo , Adenosilmetionina Descarboxilasa/química , Cristalografía por Rayos X , Humanos , Cinética , Ligandos , Conformación Proteica , Teoría Cuántica , Especificidad por Sustrato , Termodinámica
15.
Bioorg Med Chem Lett ; 19(14): 3756-9, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19457663

RESUMEN

NSC 333003 has been identified from the NCI Diversity Set as an inhibitor of the MDM2-p53 protein-protein interaction by in silico docking (virtual screening). Its potency and chemical characteristics render it well suited for lead optimization studies that can result in more potent analogs with improved drug-like properties. Its synthesis was achieved using an acid catalyzed condensation reaction from commercially available benzothiazole hydrazine and pyridyl phenyl ketone in refluxing methanol. Stereochemical implications for this compound are described.


Asunto(s)
Benzotiazoles/química , Inhibidores Enzimáticos/química , Hidrazinas/química , Proteínas Proto-Oncogénicas c-mdm2/química , Proteína p53 Supresora de Tumor/química , Animales , Benzotiazoles/síntesis química , Benzotiazoles/farmacología , Línea Celular Tumoral , Simulación por Computador , Cristalografía por Rayos X , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Hidrazinas/síntesis química , Hidrazinas/farmacología , Ratones , Conformación Molecular , Dominios y Motivos de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Estereoisomerismo , Relación Estructura-Actividad , Proteína p53 Supresora de Tumor/metabolismo
16.
Artículo en Inglés | MEDLINE | ID: mdl-29552677

RESUMEN

The non-mevalonate dependent (NMVA) pathway for the biosynthesis of isopentenyl pyrophosphate and dimethylallyl pyrophosphate is the sole source of these terpenoids for the production of isoprenoids in the apicomplexan parasites, in many eubacteria, and in plants. The absence of this pathway in higher organisms has opened a new platform for the development of novel antibiotics and anti-malarials. The enzyme catalyzing the first step of the NMVA pathway is 1-deoxy-D-xylulose-5-phosphate synthase (DXPS). DXPS catalyzes the thiamine pyrophosphate- and Mg (II)-dependent conjugation of pyruvate and D-glyceraldehyde-3-phosphate to form 1-deoxy-D-xylulose-5-phosphate and CO2. The kinetic mechanism of DXPS from Deinococcus radiodurans most consistent with our data is random sequential as shown using a combination of kinetic analysis and product and dead-end inhibition studies. The role of active site amino acids, identified by sequence alignment to other DXPS proteins, was probed by constructing and analyzing the catalytic efficacy of a set of targeted site-directed mutants.

17.
Comput Struct Biotechnol J ; 13: 85-94, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25709757

RESUMEN

Ion channels represent a large family of membrane proteins with many being well established targets in pharmacotherapy. The 'druggability' of heteromeric channels comprised of different subunits remains obscure, due largely to a lack of channel-specific probes necessary to delineate their therapeutic potential in vivo. Our initial studies reported here, investigated the family of inwardly rectifying potassium (Kir) channels given the availability of high resolution crystal structures for the eukaryotic constitutively active Kir2.2 channel. We describe a 'limited' homology modeling approach that can yield chimeric Kir channels having an outer vestibule structure representing nearly any known vertebrate or invertebrate channel. These computationally-derived channel structures were tested ""in silico for 'docking' to NMR structures of tertiapin (TPN), a 21 amino acid peptide found in bee venom. TPN is a highly selective and potent blocker for the epithelial rat Kir1.1 channel, but does not block human or zebrafish Kir1.1 channel isoforms. Our Kir1.1 channel-TPN docking experiments recapitulated published in vitro ""findings for TPN-sensitive and TPN-insensitive channels. Additionally, in silico site-directed mutagenesis identified 'hot spots' within the channel outer vestibule that mediate energetically favorable docking scores and correlate with sites previously identified with in vitro thermodynamic mutant-cycle analysis. These 'proof-of-principle' results establish a framework for virtual screening of re-engineered peptide toxins for interactions with computationally derived Kir channels that currently lack channel-specific blockers. When coupled with electrophysiological validation, this virtual screening approach may accelerate the drug discovery process, and can be readily applied to other ion channels families where high resolution structures are available.

18.
Chem Commun (Camb) ; 51(90): 16259-62, 2015 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-26400240

RESUMEN

Short peptides featuring a tetrahydropyridazinedione (tpd) backbone tether exhibit reduced conformational flexibility external to the heterocyclic constraint. Analysis by NMR, molecular modeling and X-ray crystallography suggests both covalent and non-covalent stabilization of extended peptide conformations. An efficient solid-phase protocol was developed for the synthesis of a new class of ß-strand mimics based on oligomeric tpd subunits.


Asunto(s)
Materiales Biomiméticos/química , Materiales Biomiméticos/síntesis química , Péptidos/química , Piridazinas/química , Cristalografía por Rayos X , Modelos Moleculares , Conformación Molecular
19.
Proteins ; 54(1): 58-70, 2004 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-14705024

RESUMEN

Previously, we demonstrated that natural and synthetic ester bond-containing green tea polyphenols were potent and specific non-peptide proteasome inhibitors. However, the molecular mechanism of inhibition is currently unknown. Here, we report that inhibition of the chymotrypsin activity of the 20S proteasome by (-)-epigallocatechin-3-gallate (EGCG) is time-dependent and irreversible, implicating acylation of the beta5-subunit's catalytic N-terminal threonine (Thr 1). This knowledge is used, along with in silico docking experiments, to aid in the understanding of binding and inhibition. On the basis of these docking experiments, we propose that (-)-EGCG binds the chymotrypsin site in an orientation and conformation that is suitable for a nucleophilic attack by Thr 1. Consistently, the distance from the electrophilic carbonyl carbon of (-)-EGCG to the hydroxyl group of Thr 1 was measured as 3.18 A. Furthermore, the A ring of (-)-EGCG acts as a tyrosine mimic, binding to the hydrophobic S1 pocket of the beta5-subunit. In the process, the (-)-EGCG scissile bond may become strained, which could lower the activation energy for attack by the hydroxyl group of Thr 1. This model is validated by comparison of predicted and actual activities of several EGCG analogs, either naturally occurring, previously synthesized, or rationally synthesized.


Asunto(s)
Catequina/análogos & derivados , Catequina/química , Cisteína Endopeptidasas/efectos de los fármacos , Inhibidores de Cisteína Proteinasa/química , Modelos Moleculares , Complejos Multienzimáticos/efectos de los fármacos , Amidas/química , Sitios de Unión , Camellia sinensis/química , Catequina/metabolismo , Catequina/farmacología , Quimotripsina/metabolismo , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , Inhibidores de Cisteína Proteinasa/metabolismo , Inhibidores de Cisteína Proteinasa/farmacología , Diseño de Fármacos , Flavonoides/química , Flavonoides/metabolismo , Flavonoides/farmacología , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Fenoles/química , Fenoles/metabolismo , Fenoles/farmacología , Polifenoles , Complejo de la Endopetidasa Proteasomal , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/efectos de los fármacos , Subunidades de Proteína/metabolismo
20.
Front Biosci ; 9: 2652-62, 2004 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-15358588

RESUMEN

The trace element copper is vital to the healthy functioning of organisms. Copper is used in a multitude of cellular activities including respiration, angiogenesis, and immune responses. Like other metals, copper homeostasis is a tightly regulated process. Copper is transported from dietary intake through the serum and into cells via a variety of transporters. There are a variety of copper chaperones designed to insure that copper is sequestered from interaction with cellular membranes, proteins, or DNA where its properties can result in oxidative damage. However, there are disease states in which copper transporters crucial to homeostasis are impaired resulting in potentially toxic copper accumulation. Wilsons and Menkes diseases are two such cases. Wilsons disease (hepatolenticular degeneration) is an autosomal recessive disorder resulting in extreme accumulation of copper in the liver with deposits elsewhere in the body. Menkes is characterized by a systemic copper deficiency (different from the liver specificity of Wilsons disease) and is the result of an X-linked recessive mutation in a copper transporter. Uptake of copper is impaired due to inability to remove existing copper from cells primarily in the small intestine. Though the causes are dramatically different, cancer also shares a similar diagnostic in the accumulation of copper in effected tissues. Studies have shown greatly elevated levels of copper in cancer tissues, and some diagnostics and treatments from Wilsons and Menkes diseases, such as copper chelation therapy, have been used in the treatment of cancer. Given the commonality of copper accumulation in these diseases and that common therapies exist between them, it may prove beneficial to study all three diseases in light of copper homeostasis. This review will examine the chemical nature and biological roles of copper, Wilsons and Menkes disease and their therapies, and the use of copper related therapies in cancer.


Asunto(s)
Cobre/metabolismo , Degeneración Hepatolenticular/diagnóstico , Síndrome del Pelo Ensortijado/diagnóstico , Neoplasias/diagnóstico , Animales , Quelantes/farmacología , Diseño de Fármacos , Degeneración Hepatolenticular/patología , Humanos , Ligandos , Síndrome del Pelo Ensortijado/patología , Mutación , Neoplasias/patología , Estrés Oxidativo , Oxígeno/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA