Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Neurochem Res ; 48(10): 3212-3227, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37402036

RESUMEN

Astrocytes release numerous factors known to contribute to the process of synaptogenesis, yet knowledge about the signals that control their release is limited. We hypothesized that neuron-derived signals stimulate astrocytes, which respond to neurons through the modulation of astrocyte-released synaptogenic factors. Here we investigate the effect of cholinergic stimulation of astrocytes on synaptogenesis in co-cultured neurons. Using a culture system where primary rat astrocytes and primary rat neurons are first grown separately allowed us to independently manipulate astrocyte cholinergic signaling. Subsequent co-culture of pre-stimulated astrocytes with naïve neurons enabled us to assess how prior stimulation of astrocyte acetylcholine receptors uniquely modulates neuronal synapse formation. Pre-treatment of astrocytes with the acetylcholine receptor agonist carbachol increased the expression of synaptic proteins, the number of pre- and postsynaptic puncta, and the number of functional synapses in hippocampal neurons after 24 h in co-culture. Astrocyte secretion of the synaptogenic protein thrombospondin-1 increased after cholinergic stimulation and inhibition of the receptor for thrombospondins prevented the increase in neuronal synaptic structures. Thus, we identified a novel mechanism of neuron-astrocyte-neuron communication, where neuronal release of acetylcholine stimulates astrocytes to release synaptogenic proteins leading to increased synaptogenesis in neurons. This study provides new insights into the role of neurotransmitter receptors in developing astrocytes and into our understanding of the modulation of astrocyte-induced synaptogenesis.


Asunto(s)
Astrocitos , Sinapsis , Ratas , Animales , Astrocitos/metabolismo , Sinapsis/metabolismo , Neuronas/metabolismo , Técnicas de Cocultivo , Colinérgicos/farmacología , Colinérgicos/metabolismo
2.
Neurochem Res ; 46(3): 595-610, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33398638

RESUMEN

Astrocytes are major producers of the extracellular matrix (ECM), which is involved in the plasticity of the developing brain. In utero alcohol exposure alters neuronal plasticity. Glycosaminoglycans (GAGs) are a family of polysaccharides present in the extracellular space; chondroitin sulfate (CS)- and heparan sulfate (HS)-GAGs are covalently bound to core proteins to form proteoglycans (PGs). Hyaluronic acid (HA)-GAGs are not bound to core proteins. In this study we investigated the contribution of astrocytes to CS-, HS-, and HA-GAG production by comparing the makeup of these GAGs in cortical astrocyte cultures and the neonatal rat cortex. We also explored alterations induced by ethanol in GAG and core protein levels in astrocytes. Finally, we investigated the relative expression in astrocytes of CS-PGs of the lectican family of proteins, major components of the brain ECM, in vivo using translating ribosome affinity purification (TRAP) (in Aldh1l1-EGFP-Rpl10a mice. Cortical astrocytes produce low levels of HA and show low expression of genes involved in HA biosynthesis compared to the whole developing cortex. Astrocytes have high levels of chondroitin-0-sulfate (C0S)-GAGs (possibly because of a higher sulfatase enzyme expression) and HS-GAGs. Ethanol upregulates C4S-GAGs as well as brain-specific lecticans neurocan and brevican, which are highly enriched in astrocytes of the developing cortex in vivo. These results begin to elucidate the role of astrocytes in the biosynthesis of CS- HS- and HA-GAGs, and suggest that ethanol-induced alterations of neuronal development may be in part mediated by increased astrocyte GAG levels and neurocan and brevican expression.


Asunto(s)
Astrocitos/metabolismo , Corteza Cerebral/metabolismo , Disacáridos/metabolismo , Etanol/farmacología , Glicosaminoglicanos/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/química , Astrocitos/efectos de los fármacos , Brevicano/metabolismo , Corteza Cerebral/química , Corteza Cerebral/efectos de los fármacos , Sulfatos de Condroitina/análisis , Sulfatos de Condroitina/metabolismo , Disacáridos/análisis , Femenino , Glicosaminoglicanos/análisis , Heparitina Sulfato/análisis , Heparitina Sulfato/metabolismo , Ácido Hialurónico/análisis , Ácido Hialurónico/metabolismo , Neurocano/metabolismo , Embarazo , Ratas Sprague-Dawley
3.
Alcohol Clin Exp Res ; 40(6): 1182-91, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27154003

RESUMEN

In May 2014, Dr. Francis Collins, the director of U.S. National Institutes of Health (NIH), and Dr. Janine Clayton, the director of the U.S. National Institutes of Health Office of Research on Women's Health, published a commentary in the journal Nature announcing new policies to ensure that preclinical research funded by the NIH considers both males and females. While these policies are still developing, they have already generated great interest by the scientific community and triggered both criticism and applause. This review provides a description and interpretation of the NIH guidelines, and it traces the history that led to their implementation. As expected, this NIH initiative generated some anxiety in the scientific community. The use of female animals in the investigation of basic mechanisms is perceived to increase variability in the results, and the use of both sexes has been claimed to slow the pace of scientific discoveries and to increase the cost at a time characterized by declining research support. This review discusses issues related to the study of sex as a biological variable (SABV) in alcohol studies and provides examples of how researchers have successfully addressed some of them. A practical strategy is provided to include both sexes in biomedical research while maintaining control of the research direction. The inclusion of sex as an important biological variable in experimental design, analysis, and reporting of preclinical alcohol research is likely to lead to a better understanding of alcohol pharmacology and the development of alcohol use disorder, may promote drug discovery for new pharmacotherapies by increasing scientific rigor, and may provide clinical benefit to women's health. This review aims to promote the understanding of the NIH's SABV guidelines and to provide alcohol researchers with a theoretical and practical framework for working with both sexes in preclinical research.


Asunto(s)
National Institutes of Health (U.S.)/normas , Políticas , Proyectos de Investigación/normas , Animales , Factores Sexuales , Estados Unidos , Salud de la Mujer
4.
J Neurochem ; 134(4): 728-39, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25943740

RESUMEN

In an established rat model of penetrating ballistic-like brain injury (PBBI), arylsulfatase B (ARSB; N-acetylgalactosamine 4-sulfatase) activity was significantly reduced at the ipsilateral site of injury, but unaffected at the contralateral site or in sham controls. In addition, the ARSB substrate chondroitin 4-sulfate (C4S) and total sulfated glycosaminoglycans increased. The mRNA expression of chondroitin 4-sulfotransferase 1 (C4ST1; CHST11) and the sulfotransferase activity rose at the ipsilateral site of injury (PBBI-I), indicating contributions from both increased production and reduced degradation to the accumulation of C4S. In cultured, fetal rat astrocytes, following scratch injury, the ARSB activity declined and the nuclear hypoxia inducible factor-1α increased significantly. In contrast, sulfotransferase activity and chondroitin 4-sulfotransferase expression increased following astrocyte exposure to TGF-ß1, but not following scratch. These different pathways by which C4S increased in the cell preparations were both evident in the response to injury in the PBBI-I model. Hence, findings support effects of injury because of mechanical disruption inhibiting ARSB and to chemical mediation by TGF-ß1 increasing CHST11 expression and sulfotransferase activity. The increase in C4S following traumatic brain injury is because of contributions from impaired degradation and enhanced synthesis of C4S which combine in the pathogenesis of the glial scar. This is the first report of how two mechanisms contribute to the increase in chondroitin 4-sulfate (C4S) in TBI. Following penetrating ballistic-like brain injury in a rat model and in the scratch model of injury in fetal rat astrocytes, Arylsulfatase B activity declined, leading to accumulation of C4S. TGF-ß1 exposure increased expression of chondroitin 4-sulfotransferase. Hence, the increase in C4S in TBI is attributable to both impaired degradation and enhanced synthesis, combining in the pathogenesis of the glial scar.


Asunto(s)
Lesiones Encefálicas/metabolismo , Sulfatos de Condroitina/biosíntesis , N-Acetilgalactosamina-4-Sulfatasa/metabolismo , Sulfotransferasas/biosíntesis , Animales , Lesiones Encefálicas/patología , Células Cultivadas , Femenino , Masculino , Embarazo , Ratas , Ratas Sprague-Dawley
5.
Biochim Biophys Acta ; 1831(2): 263-75, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23010475

RESUMEN

Disruption of cholesterol homeostasis in the central nervous system (CNS) has been associated with neurological, neurodegenerative, and neurodevelopmental disorders. The CNS is a closed system with regard to cholesterol homeostasis, as cholesterol-delivering lipoproteins from the periphery cannot pass the blood-brain-barrier and enter the brain. Different cell types in the brain have different functions in the regulation of cholesterol homeostasis, with astrocytes producing and releasing apolipoprotein E and lipoproteins, and neurons metabolizing cholesterol to 24(S)-hydroxycholesterol. We present evidence that astrocytes and neurons adopt different mechanisms also in regulating cholesterol efflux. We found that in astrocytes cholesterol efflux is induced by both lipid-free apolipoproteins and lipoproteins, while cholesterol removal from neurons is triggered only by lipoproteins. The main pathway by which apolipoproteins induce cholesterol efflux is through ABCA1. By upregulating ABCA1 levels and by inhibiting its activity and silencing its expression, we show that ABCA1 is involved in cholesterol efflux from astrocytes but not from neurons. Furthermore, our results suggest that ABCG1 is involved in cholesterol efflux to apolipoproteins and lipoproteins from astrocytes but not from neurons, while ABCG4, whose expression is much higher in neurons than astrocytes, is involved in cholesterol efflux from neurons but not astrocytes. These results indicate that different mechanisms regulate cholesterol efflux from neurons and astrocytes, reflecting the different roles that these cell types play in brain cholesterol homeostasis. These results are important in understanding cellular targets of therapeutic drugs under development for the treatments of conditions associated with altered cholesterol homeostasis in the CNS.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/metabolismo , Colesterol/metabolismo , Homeostasis , Neuronas/metabolismo , Transportador 1 de Casete de Unión a ATP , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1 , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Transporte Biológico , Western Blotting , Encéfalo/citología , Células Cultivadas , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa
6.
Glia ; 62(2): 259-71, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24311516

RESUMEN

In utero ethanol exposure causes fetal alcohol spectrum disorders, associated with reduced brain plasticity; the mechanisms of these effects are not well understood, particularly with respect to glial involvement. Astrocytes release factors that modulate neurite outgrowth. We explored the hypothesis that ethanol inhibits neurite outgrowth by increasing the levels of inhibitory chondroitin sulfate proteoglycans (CSPGs) in astrocytes. Astrocyte treatment with ethanol inhibited the activity of arylsulfatase B (ARSB), the enzyme that removes sulfate groups from chondroitin-4-sulfate (C4S) and triggers the degradation of C4S, increased total sulfated glycosaminoglycans (GAGs), C4S, and neurocan core-protein content and inhibited neurite outgrowth in neurons cocultured with ethanol-treated astrocytes in vitro, effects reversed by treatment with recombinant ARSB. Ethanol also inhibited ARSB activity and increased sulfate GAG and neurocan levels in the developing hippocampus after in vivo ethanol exposure. ARSB silencing increased the levels of sulfated GAGs, C4S, and neurocan in astrocytes and inhibited neurite outgrowth in cocultured neurons, indicating that ARSB activity directly regulates C4S and affects neurocan expression. In summary, this study reports two major findings: ARSB modulates sulfated GAG and neurocan levels in astrocytes and astrocyte-mediated neurite outgrowth in cocultured neurons; and ethanol inhibits the activity of ARSB, increases sulfated GAG, C4S, and neurocan levels, and thereby inhibits astrocyte-mediated neurite outgrowth. An unscheduled increase in CSPGs in the developing brain may lead to altered brain connectivity and to premature decrease in neuronal plasticity and therefore represents a novel mechanism by which ethanol can exert its neurodevelopmental effects.


Asunto(s)
Astrocitos/efectos de los fármacos , Proteoglicanos Tipo Condroitín Sulfato/efectos de los fármacos , Sulfatos de Condroitina/metabolismo , Etanol/farmacología , N-Acetilgalactosamina-4-Sulfatasa/farmacología , Neuritas/efectos de los fármacos , Animales , Astrocitos/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Células Cultivadas , Glicosaminoglicanos/metabolismo , Neuritas/metabolismo , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley
7.
J Neurochem ; 128(3): 344-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24117907

RESUMEN

Alcohol exposure affects neuronal plasticity in the adult and developing brain. Astrocytes play a major role in modulating neuronal plasticity and are a target of ethanol. Tissue plasminogen activator (tPA) is involved in modulating neuronal plasticity by degrading the extracellular matrix proteins including fibronectin and laminin and is up-regulated by ethanol in vivo. In this study we explored the hypothesis that ethanol affects DNA methylation in astrocytes thereby increasing expression and release of tPA. It was found that ethanol increased tPA mRNA levels, an effect mimicked by an inhibitor of DNA methyltransferase (DNMT) activity. Ethanol also increased tPA protein expression and release, and inhibited DNMT activity with a corresponding decrease in DNA methylation levels of the tPA promoter. Furthermore, it was observed that protein levels of DNMT3A, but not DNMT1, were reduced in astrocytes after ethanol exposure. These novel studies show that ethanol inhibits DNA methylation in astrocytes leading to increased tPA expression and release; this effect may be involved in astrocyte-mediated inhibition of neuronal plasticity by alcohol.


Asunto(s)
Astrocitos/metabolismo , Depresores del Sistema Nervioso Central/farmacología , Metilación de ADN/efectos de los fármacos , Etanol/farmacología , Activador de Tejido Plasminógeno/biosíntesis , Animales , Antimetabolitos Antineoplásicos/farmacología , Astrocitos/efectos de los fármacos , Azacitidina/análogos & derivados , Azacitidina/farmacología , Western Blotting , Células Cultivadas , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Decitabina , Ensayo de Inmunoadsorción Enzimática , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Embarazo , ARN/biosíntesis , ARN/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley
8.
Alcohol Alcohol ; 49(6): 626-34, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25081040

RESUMEN

AIMS: Cholesterol plays a pivotal role in many aspects of brain development; reduced cholesterol levels during brain development, as a consequence of genetic defects in cholesterol biosynthesis, leads to severe brain damage, including microcephaly and mental retardation, both of which are also hallmarks of the fetal alcohol syndrome. We had previously shown that ethanol up-regulates the levels of two cholesterol transporters, ABCA1 (ATP binding cassette-A1) and ABCG1, leading to increased cholesterol efflux and decreased cholesterol content in astrocytes in vitro. In the present study we investigated whether similar effects could be seen in vivo. METHODS: Pregnant Sprague-Dawley rats were fed liquid diets containing 36% of the calories from ethanol from gestational day (GD) 6 to GD 21. A pair-fed control groups and an ad libitum control group were included in the study. ABCA1 and ABCG1 protein expression and cholesterol and phospholipid levels were measured in the neocortex of female and male fetuses at GD 21. RESULTS: Body weights were decreased in female fetuses as a consequence of ethanol treatments. ABCA1 and ABCG1 protein levels were increased, and cholesterol levels were decreased, in the neocortex of ethanol-exposed female, but not male, fetuses. Levels of phospholipids were unchanged. Control female fetuses fed ad libitum displayed an up-regulation of ABCA1 and a decrease in cholesterol content compared with pair-fed controls, suggesting that a compensatory up-regulation of cholesterol levels may occur during food restriction. CONCLUSION: Maternal ethanol consumption may affect fetal brain development by increasing cholesterol transporters' expression and reducing brain cholesterol levels.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Química Encefálica/efectos de los fármacos , Colesterol/análisis , Etanol/efectos adversos , Efectos Tardíos de la Exposición Prenatal/metabolismo , Transportador 1 de Casete de Unión a ATP/análisis , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1 , Transportadoras de Casetes de Unión a ATP/análisis , Animales , Western Blotting , Encéfalo/efectos de los fármacos , Encéfalo/embriología , Femenino , Masculino , Fosfolípidos/análisis , Embarazo , Ratas , Ratas Sprague-Dawley
9.
Front Neurosci ; 17: 1193304, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37415614

RESUMEN

The role astrocytes play in brain development and function has garnered greater attention as the diversity of roles they are involved in has become apparent. We have previously shown that ethanol-exposed astrocytes alter neuronal neurite outgrowth in an in vitro co-culture system and that ethanol alters the astrocyte-produced extracellular matrix (ECM) in vitro, with similar alterations in vivo. In this study, we utilized the translating ribosome affinity purification (TRAP) procedure in Aldh1l1-EGFP/Rpl10a transgenic mouse primary cortical astrocyte cultures to transcriptionally and translationally profile the astrocyte response to ethanol. We found a large number of differences between the total RNA pool and the translating RNA pool, indicating that the transcriptional state of astrocytes may not always reflect the translational state of astrocytes. In addition, there was a considerable overlap between ethanol-dysregulated genes in the total RNA pool and the translating RNA pool. Comparisons to published datasets indicate the in vitro model used here is most similar to PD1 or PD7 in vivo cortical astrocytes, and the ethanol-regulated genes showed a significant overlap with models of chronic ethanol exposure in astrocytes, a model of third-trimester ethanol exposure in the hippocampus and cerebellum, and an acute model of ethanol exposure in the hippocampus. These findings will further our understanding of the effects of ethanol on astrocyte gene expression and protein translation and how these changes may alter brain development and support the use of in vitro astrocyte cultures as models of neonatal astrocytes.

10.
Res Sq ; 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36824819

RESUMEN

Astrocytes release numerous factors known to contribute to the process of synaptogenesis, yet knowledge about the signals that control their release is limited. We hypothesized that neuron-derived signals stimulate astrocytes, which respond by signaling back to neurons through the modulation of astrocyte-released synaptogenic factors. Here we investigate the effect of cholinergic stimulation of astrocytes on synaptogenesis in co-cultured neurons. Using a culture system where primary rat astrocytes and primary rat neurons are first grown separately allowed us to independently manipulate astrocyte cholinergic signaling. Subsequent co-culture of pre-stimulated astrocytes with naïve neurons enabled us to assess how prior stimulation of astrocyte acetylcholine receptors uniquely modulates neuronal synapse formation. Pre-treatment of astrocytes with the acetylcholine receptor agonist carbachol increased the expression of synaptic proteins, the number of pre- and postsynaptic puncta, and the number of functional synapses in hippocampal neurons after 24 hours in co-culture. Astrocyte secretion of the synaptogenic protein thrombospondin-1 increased after cholinergic stimulation and the inhibition of the target receptor for thrombospondins prevented the observed increase in neuronal synaptic structures. Thus, we identified a novel mechanism of neuron-astrocyte-neuron communication, i.e. , neuronal release of acetylcholine stimulates astrocytes to release synaptogenic proteins leading to increased synaptogenesis in neurons. This study provides new insights into the role of neurotransmitter receptors in developing astrocytes and into our understanding of the modulation of astrocyte-induced synaptogenesis.

11.
Exp Neurol ; 361: 114313, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36572372

RESUMEN

In this study we investigated the effects of a neonatal handling protocol that mimics the handling of sham control pups in protocols of neonatal exposure to brain insults on dendritic arborization and glycosaminoglycan (GAG) levels in the developing brain. GAGs are long, unbranched polysaccharides, consisting of repeating disaccharide units that can be modified by sulfation at specific sites and are involved in modulating neuronal plasticity during brain development. In this study, male and female Sprague-Dawley rats underwent neonatal handling daily between post-natal day (PD)4 and PD9, with brains analyzed on PD9. Neuronal morphology and morphometric analysis of the apical and basal dendritic trees of CA1 hippocampal pyramidal neurons were carried out by Golgi-Cox staining followed by neuron tracing and analysis with the software Neurolucida. Chondroitin sulfate (CS)-, Hyaluronic Acid (HA)-, and Heparan Sulfate (HS)-GAG disaccharide levels were quantified in the hippocampus by Liquid Chromatography/Mass Spectrometry analyses. We found sex by neonatal handling interactions on several parameters of CA1 pyramidal neuron morphology and in the levels of HS-GAGs, with females, but not males, showing an increase in both dendritic arborization and HS-GAG levels. We also observed increased expression of glucocorticoid receptor gene Nr3c1 in the hippocampus of both males and females following neonatal handling suggesting that both sexes experienced a similar stress during the handling procedure. This is the first study to show sex differences in two parameters of brain plasticity, CA1 neuron morphology and HS-GAG levels, following handling stress in neonatal rats.


Asunto(s)
Glicosaminoglicanos , Caracteres Sexuales , Animales , Femenino , Ratas , Masculino , Glicosaminoglicanos/química , Disacáridos , Ratas Sprague-Dawley , Hipocampo , Sulfatos de Condroitina , Heparitina Sulfato
12.
Front Mol Neurosci ; 16: 1125160, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37113267

RESUMEN

We report on the effects of ethanol (EtOH) and Poly (ADP-ribose) polymerase (PARP) inhibition on RNA ribosomal engagement, as a proxy for protein translation, in prefrontal cortical (PFC) pyramidal neurons. We hypothesized that EtOH induces a shift in RNA ribosomal-engagement (RE) in PFC pyramidal neurons, and that many of these changes can be reversed using a PARP inhibitor. We utilized the translating ribosome affinity purification (TRAP) technique to isolate cell type-specific RNA. Transgenic mice with EGFP-tagged Rpl10a ribosomal protein expressed only in CaMKIIα-expressing pyramidal cells were administered EtOH or normal saline (CTL) i.p. twice a day, for four consecutive days. On the fourth day, a sub-group of mice that received EtOH in the previous three days received a combination of EtOH and the PARP inhibitor ABT-888 (EtOH + ABT-888). PFC tissue was processed to isolate both, CaMKIIα pyramidal cell-type specific ribosomal-engaged RNA (TRAP-RNA), as well as genomically expressed total-RNA from whole tissue, which were submitted for RNA-seq. We observed EtOH effects on RE transcripts in pyramidal cells and furthermore treatment with a PARP inhibitor "reversed" these effects. The PARP inhibitor ABT-888 reversed 82% of the EtOH-induced changes in RE (TRAP-RNA), and similarly 83% in the total-RNA transcripts. We identified Insulin Receptor Signaling as highly enriched in the ethanol-regulated and PARP-reverted RE pool and validated five participating genes from this pathway. To our knowledge, this is the first description of the effects of EtOH on excitatory neuron RE transcripts from total-RNA and provides insights into PARP-mediated regulation of EtOH effects.

13.
Neurosci Lett ; 769: 136422, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34968722

RESUMEN

The serine protease tissue plasminogen activator (tPA), encoded by the gene Plat, exerts a wide range of proteolysis-dependent and proteolysis-independent functions. In the developing brain, tPA is involved in neuronal development via the modulation of the proteolytic degradation of the extracellular matrix (ECM). Both lack of and excessive tPA are associated with neurodevelopmental disorders and with brain pathology. Astrocytes play a major role in neurite outgrowth of developing neurons as they are major producers of ECM proteins and ECM proteases. In this study we investigated the expression of Plat in developing and mature hippocampal and cortical astrocytes of Aldh1l1-EGFP-Rpl10a mice in vivo following Translating Ribosome Affinity Purification (TRAP) and the role of tPA in modulating astrocyte-mediated neurite outgrowth in an in vitro astrocyte-neuron co-culture system. We show that Plat is highly enriched in astrocytes in the developing, but not in the mature, hippocampus and cortex. Both the silencing of tPA expression in astrocytes and astrocyte exposure to recombinant tPA reduce neuritogenesis in co-cultured hippocampal neurons. These results suggest that astrocyte tPA is involved in modulating neuronal development and that tight control of astrocyte tPA expression is important for normal neuronal development, with both experimentally elevated and reduced levels of this proteolytic enzyme impairing neurite outgrowth. These results are consistent with the hypothesis that the ECM, by serving as adhesive substrate, enables neurite outgrowth, but that controlled proteolysis of the ECM is needed for growth cone advancement.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/metabolismo , Proyección Neuronal , Activadores Plasminogénicos/metabolismo , Células Piramidales/citología , Animales , Encéfalo/embriología , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Activadores Plasminogénicos/genética , Células Piramidales/metabolismo , Ratas , Ratas Sprague-Dawley
14.
J Pharmacol Exp Ther ; 338(3): 870-8, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21628419

RESUMEN

Recent studies suggest that retinoids may be effective in the treatment of Alzheimer's disease, although exposure to an excess of retinoids during gestation causes teratogenesis. Cholesterol is essential for brain development, but high levels of cholesterol have been associated with Alzheimer's disease. We hypothesized that retinoic acid may affect cholesterol homeostasis in rat astrocytes, which regulate cholesterol distribution in the brain, through the up-regulation of cholesterol transporters ATP binding cassette (Abc)a1 and Abcg1. Tretinoin, 13-cis retinoic acid (13-cis-RA), 9-cis-RA, and the selective retinoid X receptor (RXR) agonist methoprene significantly increased cholesterol efflux induced by cholesterol acceptors and protein levels of Abca1 by 2.3- (± 0.25), 3.6- (± 0.42), 4.1- (± 0.5), and 1.75- (± 0.43) fold, respectively, and Abcg1 by 2.1- (± 0.26), 2.2- (± 0.33), 2.5- (± 0.23), and 2.2- (± 0.21) fold, respectively. 13-cis-RA and 9-cis-RA also significantly increased mRNA levels of Abca1 (maximal induction 7.3 ± 0.42 and 2.7 ± 0.17, respectively) and Abcg1 (maximal induction 2.0 ± 0.18 and 1.8 ± 0.09, respectively), and the levels of membrane-bound Abca1 (2.5 ± 0.3 and 2.5 ± 0.40-fold increase, respectively), whereas they significantly decreased intracellular cholesterol content without affecting cholesterol synthesis. The effect of 9-cis-RA on cholesterol homeostasis in astrocytes can be ascribed to the activation of RXR, whereas the effects of 13-cis-RA and tretinoin were independent of either RXRs or retinoic acid receptors. These findings suggest that retinoids affect cholesterol homeostasis in astrocytes and that this effect may be involved in both their therapeutic and teratogenic actions.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/biosíntesis , Astrocitos/metabolismo , Colesterol/metabolismo , Teratógenos/toxicidad , Tretinoina/farmacología , Transportador 1 de Casete de Unión a ATP , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1 , Animales , Astrocitos/efectos de los fármacos , Biotinilación/efectos de los fármacos , Western Blotting , Línea Celular , Supervivencia Celular/efectos de los fármacos , Colesterol/biosíntesis , Inmunoprecipitación , Isomerismo , ARN/biosíntesis , ARN/aislamiento & purificación , Ratas , Receptores de Ácido Retinoico/agonistas , Receptores de Ácido Retinoico/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tretinoina/química , Tretinoina/toxicidad , Regulación hacia Arriba/efectos de los fármacos
15.
Sci Prog ; 104(2): 368504211018943, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34019432

RESUMEN

Exposure to ethanol in utero can result in Fetal Alcohol Spectrum Disorders, which may cause long-lasting cognitive and behavioral abnormalities. Preclinical studies indicate that choline ameliorates the behavioral effects of developmental alcohol exposure in rodents, and clinical studies on the effectiveness of choline, administered early in pregnancy, showed that the adverse effects of heavy prenatal alcohol exposure on postnatal growth, and cognition in human infants were mitigated. However, little is known on the mechanisms behind the effects of choline. We have previously reported that astrocyte pre-treatment with 75 mM ethanol, in vitro, reduces neurite outgrowth in hippocampal neurons co-cultured with the pre-treated astrocytes. Our in vitro system allows us to study the effects of chemicals on astrocyte functions, able to modulate neuronal development. The main objective was to test the hypothesis that choline can ameliorate the astrocyte-mediated effects of ethanol on neurite growth. In this study, we exposed primary rat cortical astrocytes to ethanol, choline, ethanol plus choline, or control conditions for 24 h. Culture media was then removed, replaced with fresh media containing no ethanol or choline treatments and primary rat hippocampal neurons were plated on top of the astrocyte monolayer and cultured for 16 h. Neurons were then stained for ß-III Tubulin and neurite outgrowth was measured. Astrocyte exposure to ethanol (25, 50, and 75 mM) decreases neurite outgrowth in co-cultured hippocampal pyramidal neurons, while astrocyte treatment with choline had no effect. Astrocyte treatment with ethanol and choline in combination, however, prevented the effect of ethanol, leading to levels of neurite outgrowth similar the control condition. Choline prevents the inhibitory effect of ethanol-treated astrocytes on neurite outgrowth while not altering normal neuronal development. These results suggest a new, astrocyte-mediated mechanism by which choline ameliorates the effects of developmental alcohol exposure.


Asunto(s)
Astrocitos , Efectos Tardíos de la Exposición Prenatal , Animales , Células Cultivadas , Colina/farmacología , Etanol/toxicidad , Femenino , Hipocampo , Humanos , Proyección Neuronal , Neuronas , Embarazo , Ratas
16.
Artículo en Inglés | MEDLINE | ID: mdl-35505895

RESUMEN

Early life experiences are crucial for proper organization of excitatory synapses within the brain, with outsized effects on late-maturing, experience-dependent regions such as the medial prefrontal cortex (mPFC). Previous work in our lab showed that early life sleep disruption (ELSD) from postnatal days 14-21 in the highly social prairie vole results in long lasting impairments in social behavior. Here, we further hypothesized that ELSD alters glutamatergic synapses in mPFC, thereby affecting cognitive flexibility, an mPFC-dependent behavior. ELSD caused impaired cued fear extinction (indicating cognitive inflexibility), increased dendritic spine density, and decreased glutamate immunogold-labeling in vesicular glutamate transporter 1 (vGLUT1)-labeled presynaptic nerve terminals within mPFC. Our results have profound implications for neurodevelopmental disorders in humans such as autism spectrum disorder that also show poor sleep, impaired social behavior, cognitive inflexibility, as well as altered dendritic spine density and glutamate changes in mPFC, and imply that poor sleep may cause these changes.

17.
Front Cell Neurosci ; 15: 640217, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33994945

RESUMEN

Small alterations in the level of extracellular H+ can profoundly alter neuronal activity throughout the nervous system. In this study, self-referencing H+-selective microelectrodes were used to examine extracellular H+ fluxes from individual astrocytes. Activation of astrocytes cultured from mouse hippocampus and rat cortex with extracellular ATP produced a pronounced increase in extracellular H+ flux. The ATP-elicited increase in H+ flux appeared to be independent of bicarbonate transport, as ATP increased H+ flux regardless of whether the primary extracellular pH buffer was 26 mM bicarbonate or 1 mM HEPES, and persisted when atmospheric levels of CO2 were replaced by oxygen. Adenosine failed to elicit any change in extracellular H+ fluxes, and ATP-mediated increases in H+ flux were inhibited by the P2 inhibitors suramin and PPADS suggesting direct activation of ATP receptors. Extracellular ATP also induced an intracellular rise in calcium in cultured astrocytes, and ATP-induced rises in both calcium and H+ efflux were significantly attenuated when calcium re-loading into the endoplasmic reticulum was inhibited by thapsigargin. Replacement of extracellular sodium with choline did not significantly reduce the size of the ATP-induced increases in H+ flux, and the increases in H+ flux were not significantly affected by addition of EIPA, suggesting little involvement of Na+/H+ exchangers in ATP-elicited increases in H+ flux. Given the high sensitivity of voltage-sensitive calcium channels on neurons to small changes in levels of free H+, we hypothesize that the ATP-mediated extrusion of H+ from astrocytes may play a key role in regulating signaling at synapses within the nervous system.

18.
Glia ; 58(12): 1395-406, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20648635

RESUMEN

In utero alcohol exposure can lead to fetal alcohol spectrum disorders, characterized by cognitive and behavioral deficits. In vivo and in vitro studies have shown that ethanol alters neuronal development. We have recently shown that stimulation of M(3) muscarinic receptors in astrocytes increases the synthesis and release of fibronectin, laminin, and plasminogen activator inhibitor-1, causing neurite outgrowth in hippocampal neurons. As M(3) muscarinic receptor signaling in astroglial cells is strongly inhibited by ethanol, we hypothesized that ethanol may also inhibit neuritogenesis in hippocampal neurons induced by carbachol-stimulated astrocytes. In the present study, we report that the effect of carbachol-stimulated astrocytes on hippocampal neuron neurite outgrowth was inhibited in a concentration-dependent manner (25-100 mM) by ethanol. This effect was because of the inhibition of the release of fibronectin, laminin, and plasminogen activator inhibitor-1. Similar effects on neuritogenesis and on the release of astrocyte extracellular proteins were observed after the incubation of astrocytes with carbachol in the presence of 1-butanol, another short-chain alcohol, which like ethanol is a competitive substrate for phospholipase D, but not by tert-butanol, its analog that is not a substrate for this enzyme. This study identifies a potential novel mechanism involved in the developmental effects of ethanol mediated by the interaction of ethanol with cell signaling in astrocytes, leading to an impairment in neuron-astrocyte communication.


Asunto(s)
Astrocitos/metabolismo , Depresores del Sistema Nervioso Central , Etanol/farmacología , Neuritas/efectos de los fármacos , Neuronas/citología , Receptores Muscarínicos/metabolismo , Animales , Astrocitos/efectos de los fármacos , Butanoles/farmacología , Carbacol/farmacología , Células Cultivadas , Corteza Cerebral/citología , Agonistas Colinérgicos/farmacología , Técnicas de Cocultivo/métodos , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Embrión de Mamíferos , Ensayo de Inmunoadsorción Enzimática/métodos , Fibronectinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/citología , Laminina/metabolismo , Microscopía Confocal/métodos , Modelos Biológicos , Neuritas/metabolismo , Neuronas/efectos de los fármacos , Inhibidor 1 de Activador Plasminogénico/metabolismo , Ratas , Tubulina (Proteína)/metabolismo
19.
Brain Sci ; 10(2)2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32085427

RESUMEN

Binge drinking is a dangerous pattern of behavior. We tested whether chronically manipulating nucleus accumbens (NAc) activity (via clozapine-N-oxide (CNO) and Designer Receptors Exclusively Activated by Designer Drugs (DREADD)) could produce lasting effects on ethanol binge-like drinking in mice selectively bred to drink to intoxication. We found chronically increasing NAc activity (4 weeks, via CNO and the excitatory DREADD, hM3Dq) decreased binge-like drinking, but did not observe CNO-induced changes in drinking with the inhibitory DREADD, hM4Di. The CNO/hM3Dq-induced reduction in ethanol drinking persisted for at least one week, suggesting adaptive neuroplasticity via transcriptional and epigenetic mechanisms. Therefore, we defined this plasticity at the morphological and transcriptomic levels. We found that chronic binge drinking (6 weeks) altered neuronal morphology in the NAc, an effect that was ameliorated with CNO/hM3Dq. Moreover, we detected significant changes in expression of several plasticity-related genes with binge drinking that were ameliorated with CNO treatment (e.g., Hdac4). Lastly, we found that LMK235, an HDAC4/5 inhibitor, reduced binge-like drinking. Thus, we were able to target specific molecular pathways using pharmacology to mimic the behavioral effects of DREADDs.

20.
Neuroscience ; 448: 1-13, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-32920042

RESUMEN

Binge drinking is a frequent pattern of ethanol consumption within Alcohol Use Disorders (AUDs). Binge-like ethanol exposure increases Poly(ADP-ribose) polymerase (PARP) expression and activity. PARP enzymes have been implicated in addiction and serve multiple roles in the cell, including gene expression regulation. In this study, we examined the effects of binge-like alcohol consumption in the prefrontal cortex (PFC) of adult C57BL/6J male mice via a 4-day Drinking-in-the-Dark (DID) paradigm. The role of PARP in associated gene expression and behavioral changes was assessed by administering the PARP inhibitor ABT-888 on the last DID day. We then conducted an RNA-seq analysis of the PFC gene expression changes associated with DID-consumed ethanol or ABT-888 treatment. A separate cohort of mice was inoculated with an HSV-PARP1 vector in the PFC and subject to a DID experiment to verify whether overexpressed PARP1 increased ethanol drinking. We confirmed that alcohol increases Parp1 gene expression and PARP activity in the PFC. RNA-seq showed significantly altered expression of 41 genes by DID-consumed ethanol, and of 48 genes by ABT-888. These results were confirmed by qPCR in 7 of the 10 genes validated, 4 of which have been previously associated with addiction. ABT-888 reduced, and overexpression of PFC PARP1 increased DID ethanol consumption. In our model, alcohol binge drinking induced specific alterations in the PFC expression of genes potentially involved in addiction. Pharmacological PARP inhibition proved effective in reversing these changes and preventing further alcohol consumption. Our results suggest an involvement of ethanol-induced PARP1 in reinforcing binge-like addictive behavior.


Asunto(s)
Alcoholismo , Consumo Excesivo de Bebidas Alcohólicas , Consumo de Bebidas Alcohólicas , Animales , Etanol , Masculino , Ratones , Ratones Endogámicos C57BL , Poli(ADP-Ribosa) Polimerasa-1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA