Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Langmuir ; 39(20): 7029-7045, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37167610

RESUMEN

In modern life, people face a wide number of sticky problems when adhesion is highly undesirable: water and dirt stick to clothes, useful materials stick to the walls of their containers and cannot be fully used, water sticking and freezing on airplane wings affects handling and can be dangerous, biological liquids can stick and form clots inside medical devices threatening patients' lives, etc. Slippery liquid-infused porous surfaces (SLIPSs) with pressure stable omniphobicity could help to solve these issues. Lubricant depletion from porous surface and subsequent degradation of omniphobic properties is the major problem for SLIPS. It could be resolved by attaching flexible, liquid-like sidechains to the polymer matrix. Understanding the relationship between the structure of such polymer films and wetting effects is therefore of great importance. The present work is devoted to the study of droplet pinning on crosslinked polydimethylsiloxane (PDMS) polymer films with varied amounts of attached flexible PDMS sidechains and clarification of the relationship between slippery and viscoelastic properties of the films. An one-stage approach to the synthesis of such slippery coatings on smooth and porous substrates in "eco-friendly" pressurized CO2 solutions is proposed. Pinning force and Young's modulus (E) of the films on silicon substrates with variation of the grafted sidechains amount (x) are measured. The non-monotonic dependence of the pinning force on the amount of sidechains is obtained: the pinning force decreases at small x values (region I) and starts to increase at higher x (region II). The effects of the grafted sidechains amount, as well as matrix softening, are discussed for each case. It is demonstrated that the proposed method of film synthesis allows one to obtain thin, uniform coatings on fabrics without gluing the fibers. Such coatings with an optimal amount of PDMS sidechains demonstrate decreased sliding angles for droplets of water and aqueous alcohol solutions, as compared to PDMS coatings without grafted sidechains. The proposed technique may be of interest for deposition of coatings on porous surfaces having a complex morphology, such as textiles, aerogels, porous electrodes, etc.

2.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37569560

RESUMEN

The cell membrane is an important regulator for the cytotoxicity of chemotherapeutic agents. However, the biochemical and biophysical effects that occur in the membrane under the action of chemotherapy drugs are not fully described. In the present study, changes in the microviscosity of membranes of living HeLa-Kyoto tumor cells were studied during chemotherapy with paclitaxel, a widely used antimicrotubule agent. To visualize the microviscosity of the membranes, fluorescence lifetime imaging microscopy (FLIM) with a BODIPY 2 fluorescent molecular rotor was used. The lipid profile of the membranes was assessed using time-of-flight secondary ion mass spectrometry ToF-SIMS. A significant, steady-state decrease in the microviscosity of membranes, both in cell monolayers and in tumor spheroids, was revealed after the treatment. Mass spectrometry showed an increase in the unsaturated fatty acid content in treated cell membranes, which may explain, at least partially, their low microviscosity. These results indicate the involvement of membrane microviscosity in the response of tumor cells to paclitaxel treatment.


Asunto(s)
Lípidos , Neoplasias , Humanos , Membrana Celular , Membranas , Células HeLa , Microscopía Fluorescente , Lípidos/farmacología , Viscosidad , Neoplasias/tratamiento farmacológico
3.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37685907

RESUMEN

It is known that during the process of aging, there is a significant decrease in the number of melanosomes in the retinal pigment epithelium (RPE) cells in the human eye. Melanosomes act as screening pigments in RPE cells and are fundamentally important for protection against the free radicals generated by light. A loss or change in the quality of melanin in melanosomes can lead to the development of senile pathologies and aggravation in the development of various retinal diseases. We have previously shown that the interaction between melanin melanosomes and superoxide radicals results in oxidative degradation with the formation of water-soluble fluorescent products. In the present study, we show, using fluorescence analysis, HPLC, and mass spectrometry, that visible light irradiation on melanolipofuscin granules isolated from RPE cells in the human eye results in the formation of water-soluble fluorescent products from oxidative degradation of melanin, which was in contrast to lipofuscin granules and melanosomes irradiation. The formation of these products occurs as a result of the oxidative degradation of melanin by superoxide radicals, which are generated by the lipofuscin part of the melanolipofuscin granule. We identified these products both in the composition of melanolipofuscin granules irradiated with visible light and in the composition of melanosomes that were not irradiated but were, instead, oxidized by superoxide radicals. In the melanolipofuscin granules irradiated by visible light, ions that could be associated with melanin oxidative degradation products were identified by applying the principal component analysis of the time-of-flight secondary ion mass spectrometry (ToF-SIMS) data. Degradation of the intact melanosomes by visible light is also possible; however, this requires significantly higher irradiation intensities than for melanolipofuscin granules. It is concluded that the decrease in the concentration of melanin in RPE cells in the human eye with age is due to its oxidative degradation by reactive oxygen species generated by lipofuscin, as part of the melanolipofuscin granules, under the action of light.


Asunto(s)
Lipofuscina , Superóxidos , Humanos , Melaninas , Epitelio Pigmentado de la Retina , Gránulos Citoplasmáticos , Colorantes
4.
Mol Cell Proteomics ; 19(6): 960-970, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32265293

RESUMEN

Glioblastoma (GBM) is one of the most aggressive human cancers with a median survival of less than two years. A distinguishing pathological feature of GBM is a high degree of inter- and intratumoral heterogeneity. Intertumoral heterogeneity of GBM has been extensively investigated on genomic, methylomic, transcriptomic, proteomic and metabolomics levels, however only a few studies describe intratumoral heterogeneity because of the lack of methods allowing to analyze GBM samples with high spatial resolution. Here, we applied TOF-SIMS (Time-of-flight secondary ion mass spectrometry) for the analysis of single cells and clinical samples such as paraffin and frozen tumor sections obtained from 57 patients. We developed a technique that allows us to simultaneously detect the distribution of proteins and metabolites in glioma tissue with 800 nm spatial resolution. Our results demonstrate that according to TOF-SIMS data glioma samples can be subdivided into clinically relevant groups and distinguished from the normal brain tissue. In addition, TOF-SIMS was able to elucidate differences between morphologically distinct regions of GBM within the same tumor. By staining GBM sections with gold-conjugated antibodies against Caveolin-1 we could visualize border between zones of necrotic and cellular tumor and subdivide glioma samples into groups characterized by different survival of the patients. Finally, we demonstrated that GBM contains cells that are characterized by high levels of Caveolin-1 protein and cholesterol. This population may partly represent a glioma stem cells. Collectively, our results show that the technique described here allows to analyze glioma tissues with a spatial resolution beyond reach of most of other omics approaches and the obtained data may be used to predict clinical behavior of the tumor.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Análisis de la Célula Individual/métodos , Espectrometría de Masa de Ion Secundario/métodos , Animales , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Caveolina 1/metabolismo , Colesterol/metabolismo , Femenino , Glioblastoma/mortalidad , Glioblastoma/patología , Humanos , Inmunohistoquímica , Ratones , Ratones Desnudos , Recurrencia Local de Neoplasia , Pronóstico , Análisis Espacial , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35163454

RESUMEN

Aging of the retina is accompanied by a sharp increase in the content of lipofuscin granules and bisretinoid A2E in the cells of the retinal pigment epithelium (RPE) of the human eye. It is known that A2E can have a toxic effect on RPE cells. However, the specific mechanisms of the toxic effect of A2E are poorly understood. We investigated the effect of the products of photooxidative destruction of A2E on the modification of bovine serum albumin (BSA) and hemoglobin from bovine erythrocytes. A2E was irradiated with a blue light-emitting diode (LED) source (450 nm) or full visible light (400-700 nm) of a halogen lamp, and the resulting water-soluble products of photooxidative destruction were investigated for the content of carbonyl compounds by mass spectrometry and reaction with thiobarbituric acid. It has been shown that water-soluble products formed during A2E photooxidation and containing carbonyl compounds cause modification of serum albumin and hemoglobin, measured by an increase in fluorescence intensity at 440-455 nm. The antiglycation agent aminoguanidine inhibited the process of modification of proteins. It is assumed that water-soluble carbonyl products formed as a result of A2E photodestruction led to the formation of modified proteins, activation of the inflammation process, and, as a consequence, to the progression of various senile eye pathologies.


Asunto(s)
Hemoglobinas/química , Retinoides/química , Retinoides/farmacología , Albúmina Sérica Bovina/química , Animales , Bovinos , Guanidinas/farmacología , Hemoglobinas/efectos de los fármacos , Luz , Espectrometría de Masas , Retinoides/efectos de la radiación , Albúmina Sérica Bovina/efectos de los fármacos , Tiobarbitúricos/química , Agua/química
6.
Int J Mol Sci ; 23(1)2021 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-35008647

RESUMEN

Age-related macular degeneration (AMD) is the primary cause of central blindness among the elderly. AMD is associated with progressive accumulation of lipofuscin granules in retinal pigment epithelium (RPE) cells. Lipofuscin contains bisretinoid fluorophores, which are photosensitizers and are phototoxic to RPE and neuroretinal cells. In the presence of oxygen, bisretinoids are also oxidized, forming various products, consisting primarily of aldehydes and ketones, which are also potentially cytotoxic. In a prior study, we identified that in AMD, bisretinoid oxidation products are increased in RPE lipofuscin granules. The purpose of the present study was to determine if these products were toxic to cellular structures. The physicochemical characteristics of bisretinoid oxidation products in lipofuscin, which were obtained from healthy donor eyes, were studied. Raman spectroscopy and time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis identified the presence of free-state aldehydes and ketones within the lipofuscin granules. Together, fluorescence spectroscopy, high-performance liquid chromatography, and mass spectrometry revealed that bisretinoid oxidation products have both hydrophilic and amphiphilic properties, allowing their diffusion through lipofuscin granule membrane into the RPE cell cytoplasm. These products contain cytotoxic carbonyls, which can modify cellular proteins and lipids. Therefore, bisretinoid oxidation products are a likely aggravating factor in the pathogenesis of AMD.


Asunto(s)
Lipofuscina/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Anciano , Aldehídos/metabolismo , Citoplasma/metabolismo , Colorantes Fluorescentes/metabolismo , Humanos , Degeneración Macular/metabolismo , Persona de Mediana Edad , Oxidación-Reducción , Retinoides/metabolismo , Espectrometría de Fluorescencia/métodos , Espectrometría de Masa de Ion Secundario/métodos
7.
Anal Bioanal Chem ; 412(2): 311-319, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31735990

RESUMEN

Currently two techniques exist for 3D reconstruction of biological samples by time-of-flight secondary ion mass spectrometry (ToF-SIMS). The first, based on microtomy and combining of successive section images, is successfully applied for tissues, while the second, based on sputter depth profiling, is widely used for cells. In the present work, we report the first successful adaptation of sectioning technique for ToF-SIMS 3D imaging of a single cell-fully grown mouse germinal vesicle (GV) oocyte. In addition, microtomy was combined with sputter depth profiling of individual flat sections for three-dimensional reconstruction of intracellular organelles. GV oocyte sectioning allowed us to obtain molecule-specific 3D maps free from artifacts associated with surface topography and uneven etching depth. Sputter depth profiling of individual flat slices revealed fine structure of specific organelles inside the oocyte. Different oocyte organelles (cytoplasm, germinal vesicle, membranes, cumulus cells) were presented on the ion images. Atypical nucleoli referred to as "nucleolus-like body" (NLB) was detected inside the germinal vesicle in PO3- and CN- ions generated by nucleic acids and proteins respectively. Significant difference in PO3- intensity in the NLB central area and NLB border was found. This difference appears as a bright halo around the center area. The NLB size calculated for PO3- and CN- ion images is 12.9 ± 0.2 µm and 11.9 ± 0.2 µm respectively, which suggests that bright halo of PO3- ions is a chromatin compaction on the NLB surface. Areas of approximately 1.0-2.5 µm size inside nucleoplasm with increased PO3- and CN- signal were registered in germinal vesicle. Observed compartments have different sizes and shapes, and they are likely attributed to chromocenters or chromosomes.


Asunto(s)
Imagenología Tridimensional/métodos , Oocitos/citología , Espectrometría de Masa de Ion Secundario/métodos , Animales , Nucléolo Celular/metabolismo , Citoplasma/metabolismo , Femenino , Ratones , Ratones Endogámicos C57BL
8.
Analyst ; 141(13): 4121-9, 2016 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-27160416

RESUMEN

The 2D-molecular thin film analysis protocol for fully grown mice oocytes is described using an innovative approach. Time-of-flight secondary ion mass spectrometry (ToF-SIMS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and optical microscopy imaging were applied to the same mice oocyte section on the same sample holder. A freeze-dried mice oocyte was infiltrated into embedding media, e.g. Epon, and then was cut with a microtome and 2 µm thick sections were transferred onto an ITO coated conductive glass. Mammalian oocytes can contain "nucleolus-like body" (NLB) units and ToF-SIMS analysis was used to investigate the NLB composition. The ion-spatial distribution in the cell components was identified and compared with the images acquired by SEM, AFM and optical microscopy. This study presents a significant advancement in cell embryology, cell physiology and cancer-cell biochemistry.


Asunto(s)
Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Oocitos/citología , Espectrometría de Masa de Ion Secundario , Animales , Liofilización , Ratones
9.
Anal Bioanal Chem ; 408(26): 7521-8, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27510279

RESUMEN

Lipofuscin granules accumulate in the cells of retinal pigment epithelium with age, particularly in patients with hereditary diseases. These granules are heterogeneous, being composed of mixtures of proteins and lipids, including more than 21 different fluorescent compounds. Bisretinoids and their photo-oxidation and photodegradation products represent the main source of lipofuscin fluorescence and exhibit phototoxic properties. This study used time-of-flight secondary ion mass spectrometry (ToF-SIMS) with in-depth probing to assess the depth distribution of N-retinylidene-N-retinylethanolamine (A2E) and its singly and doubly oxidized forms (A2E-ox and A2E-2ox, respectively) within lipofuscin granules and in their surface layer (lipid membrane). ToF-SIMS showed that A2E and its oxidized forms were uniformly distributed throughout lipofuscin granules but were not present at the membrane surface layer. This finding is important for understanding the process involved in the formation of lipofuscin granules and in their toxicity.


Asunto(s)
Lipofuscina/química , Epitelio Pigmentado de la Retina/química , Retinoides/análisis , Espectrometría de Masa de Ion Secundario/métodos , Anciano , Humanos , Persona de Mediana Edad , Oxidación-Reducción , Epitelio Pigmentado de la Retina/citología
10.
Nat Commun ; 15(1): 4455, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796479

RESUMEN

Lipids are the most abundant but poorly explored components of the human brain. Here, we present a lipidome map of the human brain comprising 75 regions, including 52 neocortical ones. The lipidome composition varies greatly among the brain regions, affecting 93% of the 419 analyzed lipids. These differences reflect the brain's structural characteristics, such as myelin content (345 lipids) and cell type composition (353 lipids), but also functional traits: functional connectivity (76 lipids) and information processing hierarchy (60 lipids). Combining lipid composition and mRNA expression data further enhances functional connectivity association. Biochemically, lipids linked with structural and functional brain features display distinct lipid class distribution, unsaturation extent, and prevalence of omega-3 and omega-6 fatty acid residues. We verified our conclusions by parallel analysis of three adult macaque brains, targeted analysis of 216 lipids, mass spectrometry imaging, and lipidome assessment of sorted murine neurons.


Asunto(s)
Encéfalo , Lipidómica , Lípidos , Humanos , Animales , Encéfalo/metabolismo , Ratones , Adulto , Lípidos/química , Lípidos/análisis , Masculino , Metabolismo de los Lípidos , Macaca , Neuronas/metabolismo , Femenino , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-6/metabolismo , Vaina de Mielina/metabolismo , Persona de Mediana Edad
11.
Micromachines (Basel) ; 14(5)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37241536

RESUMEN

Zinc oxide is one of the well-known photocatalysts, the potential applications of which are of great importance in photoactivated gas sensing, water and air purification, photocatalytic synthesis, among others. However, the photocatalytic performance of ZnO strongly depends on its morphology, composition of impurities, defect structure, and other parameters. In this paper, we present a route for the synthesis of highly active nanocrystalline ZnO using commercial ZnO micropowder and ammonium bicarbonate as starting precursors in aqueous solutions under mild conditions. As an intermediate product, hydrozincite is formed with a unique morphology of nanoplates with a thickness of about 14-15 nm, the thermal decomposition of which leads to the formation of uniform ZnO nanocrystals with an average size of 10-16 nm. The synthesized highly active ZnO powder has a mesoporous structure with a BET surface area of 79.5 ± 4.0 m2/g, an average pore size of 20 ± 2 nm, and a cumulative pore volume of 0.507 ± 0.051 cm3/g. The defect-related PL of the synthesized ZnO is represented by a broad band with a maximum at 575 nm. The crystal structure, Raman spectra, morphology, atomic charge state, and optical and photoluminescence properties of the synthesized compounds are also discussed. The photo-oxidation of acetone vapor over ZnO is studied by in situ mass spectrometry at room temperature and UV irradiation (λmax = 365 nm). The main products of the acetone photo-oxidation reaction, water and carbon dioxide, are detected by mass spectrometry, and the kinetics of their release under irradiation are studied. The effect of morphology and microstructure on the photo-oxidative activity of ZnO samples is demonstrated.

12.
Cells ; 12(21)2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37947661

RESUMEN

The biophysical properties of cells described at the level of whole cells or their membranes have many consequences for their biological behavior. However, our understanding of the relationships between mechanical parameters at the level of cell (stiffness, viscoelasticity) and at the level of the plasma membrane (fluidity) remains quite limited, especially in the context of pathologies, such as cancer. Here, we investigated the correlations between cells' stiffness and viscoelastic parameters, mainly determined via the actin cortex, and plasma membrane microviscosity, mainly determined via its lipid profile, in cancer cells, as these are the keys to their migratory capacity. The mechanical properties of cells were assessed using atomic force microscopy (AFM). The microviscosity of membranes was visualized using fluorescence-lifetime imaging microscopy (FLIM) with the viscosity-sensitive probe BODIPY 2. Measurements were performed for five human colorectal cancer cell lines that have different migratory activity (HT29, Caco-2, HCT116, SW 837, and SW 480) and their chemoresistant counterparts. The actin cytoskeleton and the membrane lipid composition were also analyzed to verify the results. The cell stiffness (Young's modulus), measured via AFM, correlated well (Pearson r = 0.93) with membrane microviscosity, measured via FLIM, and both metrics were elevated in more motile cells. The associations between stiffness and microviscosity were preserved upon acquisition of chemoresistance to one of two chemotherapeutic drugs. These data clearly indicate that mechanical parameters, determined by two different cellular structures, are interconnected in cells and play a role in their intrinsic migratory potential.


Asunto(s)
Citoesqueleto de Actina , Humanos , Viscosidad , Microscopía de Fuerza Atómica/métodos , Células CACO-2 , Membrana Celular
13.
ACS Appl Mater Interfaces ; 15(4): 5628-5643, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36649132

RESUMEN

In this paper, we suggest a previously unknown template-directed polymerization strategy for producing graphene/polymer aerogels with elevated mechanical properties, preservation of the nanoscale pore structure, an extraordinary crystallite structure, as well as tunable electrical and hydrophobic properties. The suggested approach is studied using the reduced graphene oxide (rGO)/ultrahigh molecular weight polyethylene (UHMWPE) system as an example. We also develop a novel method of ethylene polymerization with formation of UHMWPE directly on the surface of rGO sheets prestructured as the aerogel template. At a UHMWPE content smaller than 20 wt %, composite materials demonstrate completely reversible deformation and good conductivity. An ultrahigh polymer content (more than 80 wt %) results in materials with pronounced plasticity, improved hydrophobic properties, and a Young's modulus that is more than 200 times larger than that of pure rGO aerogel. Variation of the polymer content makes it possible to tune the electro-conductive properties of the aerogel in the range from 4.8 × 10-6 to 4.9 × 10-1 S/m and adjust its hydrophobic properties. The developed approach would make it possible to create composite materials with highly developed nanostructural morphology and advanced properties controlled by the thickness of the polymer layer on the surface of graphene sheets.

14.
Polymers (Basel) ; 14(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36236053

RESUMEN

This work is devoted to the formation and study of polymer composites with a segregated structure filled with single-walled carbon nanotubes (SWCNTs), reduced graphene oxide (rGO), and their mixtures. For the first time, polymer composites with a segregated structure filled with rGO/SWCNTs mixtures were obtained. A copolymer of vinylidene fluoride and tetrafluoroethylene (P(VDF-TFE)) was used as a polymer matrix. At a fixed value of the total mass fraction of carbon nanofillers (0.5, 1, and 1.5 wt%), the rGO/SWCNTs ratio was varied. The composites were examined using scanning electron microscopy, wide-range dielectric spectroscopy, and tested for the compression. The effect of the rGO/SWCNTs ratio on the electrical conductivity and mechanical properties of the composites was evaluated. It was shown that, with a decrease in the rGO/SWCNTs ratio, the electrical conductivity increased and reached the maximum at the 1 wt% filling, regardless of the samples' composition. The maximum value of electrical conductivity from the entire data set was 12.2 S/m. The maximum of elastic modulus was 378.7 ± 3.5 MPa for the sample with 1 wt% SWCNTs, which is 14% higher than the P(VDF-TFE) elastic modulus. The composite filled with a mixture of 0.5 wt% rGO and 0.5 wt% SWCNTs reflected 70% of the electromagnetic wave energy from the front boundary, which is 14% and 50% more than for composites with 1 wt% SWCNTs and with 1 wt% rGO, respectively. The lowest transmission coefficient of ultra-high frequencies waves was obtained for a composite sample with a mixture of 0.5 wt% rGO and 0.5 wt% SWCNTs and amounted to less than 1% for a 2 mm thickness sample.

15.
Methods Appl Fluoresc ; 10(4)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35970177

RESUMEN

The investigations reported here were designed to determine whether the bulk plasma membrane is involved in mechanisms of acquired resistance of colorectal cancer cells to 5-fluorouracil (5-FU). Fluorescence lifetime imaging microscopy (FLIM) of live cultured cells stained with viscosity-sensitive probe BODIPY 2 was exploited to non-invasively assess viscosity in the course of treatment and adaptation to the drug. In parallel, lipid composition of membranes was examined with the time-of-flight secondary ion mass spectrometry (ToF-SIMS). Our results showed that a single treatment with 5-FU induced only temporal changes of viscosity in 5-FU sensitive cells immediately after adding the drug. Acquisition of chemoresistance was accompanied by persistent increase of viscosity, which was preserved upon treatment without any changes. Lipidomic analysis revealed that the resistant cells had a lower level of monounsaturated fatty acids and increased sphingomyelin or decreased phosphatidylcholine in their membranes, which partly explain increase of the viscosity. Thus, we propose that a high membrane viscosity mediates the acquisition of resistance to 5-FU.


Asunto(s)
Fluorouracilo , Neoplasias , Membrana Celular , Fluorouracilo/farmacología , Microscopía Fluorescente , Fosfatidilcolinas , Viscosidad
16.
ACS Omega ; 7(8): 6810-6823, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35252675

RESUMEN

Understanding the effect of heteroatom doping is crucial for the design of carbon nanodots (CNDs) with enhanced luminescent properties for fluorescence imaging and light-emitting devices. Here, we study the effect and mechanisms of luminescence enhancement through nitrogen doping in nanodots synthesized by the bottom-up route in an intense femtosecond laser field using the comparative analysis of CNDs obtained from benzene and pyridine. We demonstrate that laser irradiation of aromatic compounds produces hybrid nanoparticles consisting of a nanocrystalline core with a shell of surface-bonded aromatic rings. These nanoparticles exhibit excitation-dependent visible photoluminescence typical for CNDs. Incorporation of nitrogen into pyridine-derived CNDs enhances their luminescence characteristics through the formation of small pyridine-based fluorophores peripherally bonded to the nanoparticles. We identify oxidation of surface pyridine rings as a mechanism of formation of several distinct blue- and green-emitting fluorophores in nanodots, containing pyridine moieties. These findings shed additional light on the nature and formation mechanism of effective fluorophores in nitrogen-doped carbon nanodots produced by the bottom-up route.

17.
Cancers (Basel) ; 13(24)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34944789

RESUMEN

Maintenance of the biophysical properties of membranes is essential for cell survival upon external perturbations. However, the links between a fluid membrane state and the drug resistance of cancer cells remain elusive. Here, we investigated the role of membrane viscosity and lipid composition in the responses of cancer cells to oxaliplatin and the development of chemoresistance. Plasma membrane viscosity was monitored in live colorectal cancer cells and tumor xenografts using two-photon excited fluorescence lifetime imaging microscopy (FLIM) using the fluorescent molecular rotor BODIPY 2. The lipid profile was analyzed using time-of-flight secondary ion mass spectrometry (ToF-SIMS). It was found that the plasma membrane viscosity increased upon oxaliplatin treatment, both in vitro and in vivo, and that this correlated with lower phosphatidylcholine and higher cholesterol content. The emergence of resistance to oxaliplatin was accompanied by homeostatic adaptation of the membrane lipidome, and the recovery of lower viscosity. These results suggest that maintaining a constant plasma membrane viscosity via remodeling of the lipid profile is crucial for drug resistance in cancer.

18.
Nanomaterials (Basel) ; 12(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35010086

RESUMEN

In this article, a facile, one-step method for the formation of silver thin-film nanostructures on the surface of Al2O3 substrates using the hydrothermal method is proposed. The dependence of the SERS effect intensity of the formed films during the detection of methylene blue (MB) low concentrations on the synthesis conditions, additional temperature treatment, and laser radiation wavelength (532 and 780 nm) in comparison with similar dye films on commercial SERS substrates is shown. The detection limit of the analyte used for the indicated lasers is estimated. The effect of the synthesis temperature on the particle size, crystal structure, and microstructure features of the obtained thin films based on silver nanoparticles is demonstrated. Using spreading resistance microscopy, the interface between the substrate and Ag particles is studied, and the dependence of the size of the corresponding gap between them and the nature of microstructural defects on the parameters of hydrothermal treatment of reaction systems in the presence of Al2O3 substrates is shown. As a result of the study, the factors associated with the properties of the obtained SERS substrates and the parameters of recording the spectra, which affect the amplification factor of the spectral lines intensity of the analyte, are revealed.

19.
J Biomed Opt ; 25(12)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33331150

RESUMEN

SIGNIFICANCE: Despite the importance of the cell membrane in regulation of drug activity, the influence of drug treatments on its physical properties is still poorly understood. The combination of fluorescence lifetime imaging microscopy (FLIM) with specific viscosity-sensitive fluorescent molecular rotors allows the quantification of membrane viscosity with high spatiotemporal resolution, down to the individual cell organelles. AIM: The aim of our work was to analyze microviscosity of the plasma membrane of living cancer cells during chemotherapy with cisplatin using FLIM and correlate the observed changes with lipid composition and cell's response to treatment. APPROACH: FLIM together with viscosity-sensitive boron dipyrromethene-based fluorescent molecular rotor was used to map the fluidity of the cell's membrane. Chemical analysis of membrane lipid composition was performed with time-of-flight secondary ion mass spectrometry (ToF-SIMS). RESULTS: We detected a significant steady increase in membrane viscosity in viable cancer cells, both in cell monolayers and tumor spheroids, upon prolonged treatment with cisplatin, as well as in cisplatin-adapted cell line. ToF-SIMS revealed correlative changes in lipid profile of cisplatin-treated cells. CONCLUSIONS: These results suggest an involvement of membrane viscosity in the cell adaptation to the drug and in the acquisition of drug resistance.


Asunto(s)
Cisplatino , Neoplasias , Cisplatino/farmacología , Colorantes Fluorescentes , Microscopía Fluorescente , Orgánulos , Viscosidad
20.
Sci Rep ; 10(1): 14063, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32820221

RESUMEN

Membrane fluidity plays an important role in many cell functions such as cell adhesion, and migration. In stem cell lines membrane fluidity may play a role in differentiation. Here we report the use of viscosity-sensitive fluorophores based on a BODIPY core, termed "molecular rotors", in combination with Fluorescence Lifetime Imaging Microscopy, for monitoring of plasma membrane viscosity changes in mesenchymal stem cells (MSCs) during osteogenic and chondrogenic differentiation. In order to correlate the viscosity values with membrane lipid composition, the detailed analysis of the corresponding membrane lipid composition of differentiated cells was performed by time-of-flight secondary ion mass spectrometry. Our results directly demonstrate for the first time that differentiation of MSCs results in distinct membrane viscosities, that reflect the change in lipidome of the cells following differentiation.


Asunto(s)
Compuestos de Boro/química , Diferenciación Celular , Colorantes Fluorescentes/química , Fluidez de la Membrana , Células Madre Mesenquimatosas/citología , Microscopía Fluorescente/métodos , Viscosidad , Antígenos CD/análisis , Membrana Celular , Células Cultivadas , Condrogénesis , Humanos , Osteogénesis , Espectrometría de Masa de Ion Secundario
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA