Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37957115

RESUMEN

Background/Aims: Gastroesophageal reflux disease is frequently observed and has no definitive treatment. There are 2 main views on the pathogenesis of gastroesophageal reflux disease. The first is that epithelial damage starts from the mucosa by acidic-peptic damage and the inflammatory response of granulocytes. The other view is that T-lymphocytes attract chemoattractants from the basal layer to the mucosa, and granulocytes do not migrate until damage occurs. We aim to investigate the inflammatory processes occurring in the esophageal epithelium of the phenotypes at the molecular level. We also examined the effects of these changes on tissue integrity. Methods: Patients with mild and severe erosive reflux, nonerosive reflux, reflux hypersensitivity, and functional heartburn were included. Inflammatory gene expressions (JAK/STAT Signaling and NFKappaB Primer Libraries), chemokine protein levels, and tissue integrity were examined in the esophageal biopsies. Results: There was chronic inflammation in the severe erosion group, the acute response was also triggered. In the mild erosion group, these 2 processes worked together, but homeostatic cytokines were also secreted. In nonerosive groups, T-lymphocytes were more dominant. In addition, the inflammatory response was highly triggered in the reflux hypersensitivity and functional heartburn groups, and it was associated with physiological reflux exposure and sensitivity. Conclusions: "Microinflammation" in physiological acid exposure groups indicate that even a mild trigger is sufficient for the initiation and progression of inflammatory activity. Additionally, the anti-inflammatory cytokines were highly increased. The results may have a potential role in the treatment of heartburn symptoms and healing of the mucosa.

2.
Anticancer Agents Med Chem ; 21(13): 1724-1731, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33155931

RESUMEN

BACKGROUND: Chronic Myeloid Leukemia (CML) is characterized by a reciprocal translocation t(9;22) and forms BCR/ABL1 fusion gene called the Philadelphia chromosome. The therapeutic targets for CML patients mediated with BCR/ABL1 oncogenic are tyrosine kinase inhibitors such as imatinib, dasatinib, and nilotinib. The latter two of which have been approved for the treatment of imatinib-resistant or intolerance CML patients. Mitotic Catastrophe (MC) is one of the non-apoptotic mechanisms initiated in types of cancer cells in response to anti-cancer therapies. Pharmacological inhibitors of G2 checkpoint members or genetic suppression of PLK1, PLK2, ATR, ATM, CHK1, and CHK2 can trigger DNA-damage-stimulated mitotic catastrophe. PLK1 and AURKA/B are anomalously expressed in CML cells, where phosphorylation and activation of PLK1 occur by AURKB at centromeres and kinetochores. OBJECTIVE: The purpose of this study is to investigate the effect of dasatinib on the expression of genes in MC and apoptosis pathways in K562 cells. METHODS: Total RNA was isolated from K-562 cells treated with the IC50 value of dasatinib and untreated cells as a control group. The expression of MC and apoptosis-related genes, was analyzed by the qRT-PCR system. RESULTS: The array-data demonstrated that dasatinib-treated K562 cells significantly caused the decrease of several genes (AURKA, AURKB, PLK, CHEK1, MYC, XPC, BCL2, and XRCC2). CONCLUSION: The evidence supplies a basis to support clinical researches for the suppression of oncogenes such as PLKs with AURKs in the treatment of types of cancer, especially chronic myeloid leukemia.


Asunto(s)
Antineoplásicos/farmacología , Dasatinib/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Mitosis/efectos de los fármacos , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dasatinib/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Mitosis/genética , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA