Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 30(Pt 1): 57-64, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36601926

RESUMEN

Adaptive X-ray mirrors are being adopted on high-coherent-flux synchrotron and X-ray free-electron laser beamlines where dynamic phase control and aberration compensation are necessary to preserve wavefront quality from source to sample, yet challenging to achieve. Additional difficulties arise from the inability to continuously probe the wavefront in this context, which demands methods of control that require little to no feedback. In this work, a data-driven approach to the control of adaptive X-ray optics with piezo-bimorph actuators is demonstrated. This approach approximates the non-linear system dynamics with a discrete-time model using random mirror shapes and interferometric measurements as training data. For mirrors of this type, prior states and voltage inputs affect the shape-change trajectory, and therefore must be included in the model. Without the need for assumed physical models of the mirror's behavior, the generality of the neural network structure accommodates drift, creep and hysteresis, and enables a control algorithm that achieves shape control and stability below 2 nm RMS. Using a prototype mirror and ex situ metrology, it is shown that the accuracy of our trained model enables open-loop shape control across a diverse set of states and that the control algorithm achieves shape error magnitudes that fall within diffraction-limited performance.

2.
Opt Express ; 26(16): 21054-21068, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-30119411

RESUMEN

We present a computational method for field-varying aberration recovery in optical systems by imaging a weak (index-matched) diffuser. Using multiple images acquired under plane wave illumination at distinct angles, the aberrations of the imaging system can be uniquely determined up to a sign. Our method is based on a statistical model for image formation that relates the spectrum of the speckled intensity image to the local aberrations at different locations in the field-of-view. The diffuser is treated as a wide-sense stationary scattering object, eliminating the need for precise knowledge of its surface shape. We validate our method both numerically and experimentally, showing that this relatively simple algorithmic calibration method can be reliably used to recover system aberrations quantitatively.

3.
Sci Rep ; 10(1): 11673, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32669602

RESUMEN

We demonstrate a method for characterizing the field-dependent aberrations of a full-field synchrotron-based extreme ultraviolet microscope. The statistical uniformity of the inherent, atomic-scale roughness of readily-available photomask blanks enables a self-calibrating computational procedure using images acquired under standard operation. We characterize the aberrations across a 30-um field-of-view, demonstrating a minimum aberration magnitude of smaller than [Formula: see text] averaged over the center 5-um area, with a measurement accuracy better than [Formula: see text]. The measured field variation of aberrations is consistent with system geometry and agrees with prior characterizations of the same system. In certain cases, it may be possible to additionally recover the illumination wavefront from the same images. Our method is general and is easily applied to coherent imaging systems with steerable illumination without requiring invasive hardware or custom test objects; hence, it provides substantial benefits when characterizing microscopes and high-resolution imaging systems in situ.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA