Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 60(26): 14636-14643, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34010463

RESUMEN

Polymerization at the liquid-liquid interface has attracted much attention for synthesizing ultrathin polymer films for molecular sieving. However, it remains a major challenge to conduct this process outside the alkane-water interface since it not only suffers water-caused side reactions but also is limited to water-soluble monomers. Here, we report the interfacial polymerization at the alkane/ionic liquid interface (IP@AILI) where the ionic liquid acts as the universal solvent for diversified amines to synthesize task-specific polyamide nanofilms. We propose that IP@AILI occurs when acyl chloride diffuses from the alkane into the ionic liquid instead of being triggered by the diffusion of amines as in the conventional alkane-water system, which is demonstrated by thermodynamic partitioning and kinetic monitoring. The prepared polyamide nanofilms with precisely adjustable pore sizes display unprecedented permeability and selectivity in various separation processes.

2.
Research (Wash D C) ; 7: 0359, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694199

RESUMEN

Porous substrates act as open "interfacial reactors" during the synthesis of polyamide composite membranes via interfacial polymerization. However, achieving a thin and dense polyamide nanofilm with high permeance and selectivity is challenging when using a conventional substrate with uniform wettability. To overcome this limitation, we propose the use of Janus porous substrates as confined interfacial reactors to decouple the local monomer concentration from the total monomer amount during interfacial polymerization. By manipulating the location of the hydrophilic/hydrophobic interface in a Janus porous substrate, we can precisely control the monomer solution confined within the hydrophilic layer without compromising its concentration. The hydrophilic surface ensures the uniform distribution of monomers, preventing the formation of defects. By employing Janus substrates fabricated through single-sided deposition of polydopamine/polyethyleneimine, we significantly reduce the thickness of the polyamide nanofilms from 88.4 to 3.8 nm by decreasing the thickness of the hydrophilic layer. This reduction leads to a remarkable enhancement in water permeance from 7.2 to 52.0 l/m2·h·bar while still maintaining ~96% Na2SO4 rejection. The overall performance of this membrane surpasses that of most reported membranes, including state-of-the-art commercial products. The presented strategy is both simple and effective, bringing ultrapermeable polyamide nanofilms one step closer to practical separation applications.

3.
Nat Commun ; 15(1): 2282, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480727

RESUMEN

Fine design of surface charge properties of polyamide membranes is crucial for selective ionic and molecular sieving. Traditional membranes face limitations due to their inherent negative charge and limited charge modification range. Herein, we report a facile ionic liquid-decoupled bulk/interfacial diffusion strategy to elaborate the double charge flips of polyamide membranes, enabling on-demand transformation from inherently negative to highly positive and near-neutral charges. The key to these flips lies in the meticulous utilization of ionic liquid that decouples intertwined bulk/interfacial diffusion, enhancing interfacial while inhibiting bulk diffusion. These charge-tunable polyamide membranes can be customized for impressive separation performance, for example, profound Cl-/SO42- selectivity above 470 in sulfate recovery, ultrahigh Li+/Mg2+ selectivity up to 68 in lithium extraction, and effective divalent ion removal in pharmaceutical purification, surpassing many reported polyamide nanofiltration membranes. This advancement adds a new dimension to in the design of advanced polymer membranes via interfacial polymerization.

4.
Chem Commun (Camb) ; 59(89): 13258-13271, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37869905

RESUMEN

Interfacial polymerization is a well-known process to synthesize separation layers for thin film composite membranes at an immiscible organic liquid-aqueous liquid interface. The organic-aqueous interface determines the diffusion dynamics of monomers and the chemical environment for polymerization, exerting a critical influence on the formation of polymer thin films. This review summarizes recent advances in tailoring interfacial polymerization using interfaces beyond the conventional alkane-water interface to achieve high-performance separation films with designed structures. Diverse liquid-liquid interfaces are introduced for synthesizing separation films by adding co-solvents into the organic phase and/or the aqueous phase, respectively, or by replacing one of the liquid phases with other solvents. Innovative liquid-gel and liquid-gas interfaces are then summarized for the synthesis of polymer thin films for separation. Novel strategies to form reaction interfaces, such as spray-coating, are also presented and discussed. In addition, we discuss the details of how a physically or chemically patterned substrate affects interfacial polymerization. Finally, the potential of unconventional interfaces in interfacial polymerization is forecast with both challenges and opportunities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA