Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioorg Chem ; 153: 107905, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39476599

RESUMEN

Because epidermal growth factor receptor (EGFR) is the most commonly mutated oncogene in glioblastoma (GBM), the development of EGFR inhibitors has become a promising direction for the treatment of GBM. However, due to factors such as limited blood-brain barrier (BBB) permeability and pathway compensation mechanisms, current EGFR inhibitors targeting GBM are not satisfactory. In the previous study, we obtained compound 10c with strong anti-cell proliferation activity. Since macrocyclization can effectively change the physical and chemical properties of molecules, and optimize their selectivity. Therefore, a series of 2-amino-4-thiazolyl pyridine scaffold macrocyclic derivatives were designed and synthesized using compound 10c as the lead compound in this study. Compound 3a, which inhibited the growth of glioblastoma cell lines U87MG and U87-EGFRVIII, had average IC50 values of 4.69 µM and 4.98 µM, respectively. Compound 3a was highly selective to 9 kinases in the ErbB family, including ErbB2 and ErbB4. In addition, compound 3a demonstrated good blood-brain barrier permeability in mice, the blood-brain concentration of the drug remained above 20 % within 5-60 min following intravenous administration in mice. In conclusion, compound 3a is a promising candidate for novel EGFR inhibitors targeting GBM.

2.
Bioorg Med Chem ; 96: 117532, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38006642

RESUMEN

Abelson tyrosine kinase (c-Abl) is involved in various biological processes in neurodegenerative diseases and is an attractive target for anti-PD (Parkinson's disease) drug discovery. Based on our previous work, we designed several novel c-Abl inhibitors through a conformational constrained strategy and evaluated their pharmacological activities. Among them, compound A6 exhibited superior inhibitory activity against c-Abl than nilotinib in the homogenous time-resolved fluorescence (HTRF) assay. Furthermore, A6 displayed higher neuroprotective effects against SH-SY5Y cell death induced by MPP+ and lower cytotoxicity than that of nilotinib. Molecular modeling revealed that the 1H-pyrrolo[2,3-B]pyridine ring may contribute to the high affinity of A6 for binding to c-Abl. Collectively, these results suggest that A6 deserves further investigation as a c-Abl inhibitor for neurodegenerative disorders.


Asunto(s)
Neuroblastoma , Fármacos Neuroprotectores , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Fármacos Neuroprotectores/farmacología , Pirimidinas/farmacología
3.
J Enzyme Inhib Med Chem ; 38(1): 2227779, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37349867

RESUMEN

Clinical treatment by FDA-approved ROS1/ALK inhibitor Crizotinib significantly improved the therapeutic outcomes. However, the emergence of drug resistance, especially driven by acquired mutations, have become an inevitable problem and worsened the clinical effects of Crizotinib. To combat drug resistance, some novel 2-aminopyridine derivatives were designed rationally based on molecular simulation, then synthesised and subjected to biological test. The preferred spiro derivative C01 exhibited remarkable activity against CD74-ROS1G2032R cell with an IC50 value of 42.3 nM, which was about 30-fold more potent than Crizotinib. Moreover, C01 also potently inhibited enzymatic activity against clinically Crizotinib-resistant ALKG1202R, harbouring a 10-fold potency superior to Crizotinib. Furthermore, molecular dynamic disclosed that introducing the spiro group could reduce the steric hindrance with bulky side chain (Arginine) in solvent region of ROS1G2032R, which explained the sensitivity of C01 to drug-resistant mutant. These results indicated a path forward for the generation of anti Crizotinib-resistant ROS1/ALK dual inhibitors.


Asunto(s)
Neoplasias Pulmonares , Proteínas Tirosina Quinasas , Humanos , Quinasa de Linfoma Anaplásico , Resistencia a Antineoplásicos , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/química , Crizotinib/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Mutación , Línea Celular Tumoral
4.
Pharmaceutics ; 15(5)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37242743

RESUMEN

Targeting the epidermal growth factor receptor (EGFR) is one of the potential ways to treat glioblastoma (GBM). In this study, we investigate the anti-GBM tumor effects of the EGFR inhibitor SMUZ106 in both in vitro and in vivo conditions. The effects of SMUZ106 on the growth and proliferation of GBM cells were explored through MTT and clone formation experiments. Additionally, flow cytometry experiments were conducted to study the effects of SMUZ106 on the cell cycle and apoptosis of GBM cells. The inhibitory activity and selectivity of SMUZ106 to the EGFR protein were proved by Western blotting, molecular docking, and kinase spectrum screening methods. We also conducted a pharmacokinetic analysis of SMUZ106 hydrochloride following i.v. or p.o. administration to mice and assessed the acute toxicity level of SMUZ106 hydrochloride following p.o. administration to mice. Subcutaneous and orthotopic xenograft models of U87MG-EGFRvIII cells were established to assess the antitumor activity of SMUZ106 hydrochloride in vivo. SMUZ106 could inhibit the growth and proliferation of GBM cells, especially for the U87MG-EGFRvIII cells with a mean IC50 value of 4.36 µM. Western blotting analyses showed that compound SMUZ106 inhibits the level of EGFR phosphorylation in GBM cells. It was also shown that SMUZ106 targets EGFR and presents high selectivity. In vivo, the absolute bioavailability of SMUZ106 hydrochloride was 51.97%, and its LD50 exceeded 5000 mg/kg. SMUZ106 hydrochloride significantly inhibited GBM growth in vivo. Furthermore, SMUZ106 inhibited the activity of U87MG-resistant cells induced by temozolomide (TMZ) (IC50: 7.86 µM). These results suggest that SMUZ106 hydrochloride has the potential to be used as a treatment method for GBM as an EGFR inhibitor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA