Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cell Commun Signal ; 18(1): 163, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33081785

RESUMEN

In recent years, it has been demonstrated that extracellular vesicles (EVs) can be released by almost all cell types, and detected in most body fluids. In the tumour microenvironment (TME), EVs serve as a transport medium for lipids, proteins, and nucleic acids. EVs participate in various steps involved in the development and progression of malignant tumours by initiating or suppressing various signalling pathways in recipient cells. Although tumour-derived EVs (T-EVs) are known for orchestrating tumour progression via systemic pathways, EVs from non-malignant cells (nmEVs) also contribute substantially to malignant tumour development. Tumour cells and non-malignant cells typically communicate with each other, both determining the progress of the disease. In this review, we summarise the features of both T-EVs and nmEVs, tumour progression, metastasis, and EV-mediated chemoresistance in the TME. The physiological and pathological effects involved include but are not limited to angiogenesis, epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) remodelling, and immune escape. We discuss potential future directions of the clinical application of EVs, including diagnosis (as non-invasive biomarkers via liquid biopsy) and therapeutic treatment. This may include disrupting EV biogenesis and function, thus utilising the features of EVs to repurpose them as a therapeutic tool in immunotherapy and drug delivery systems. We also discuss the overall findings of current studies, identify some outstanding issues requiring resolution, and propose some potential directions for future research. Video abstract.


Asunto(s)
Vesículas Extracelulares/metabolismo , Microambiente Tumoral , Animales , Humanos , Modelos Biológicos , Neoplasias/diagnóstico , Neoplasias/patología , Neoplasias/terapia
2.
BMC Musculoskelet Disord ; 21(1): 421, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32611412

RESUMEN

BACKGROUND: Although double-plate fixation (DP), i.e., fixation with a combination of a main lateral plate (LP) and a support medial plate (MP), is a relatively mature method for treating femoral shaft non-union with bone defect causes complications. The purpose of this study was to evaluate LP fixation with a 3D-printed, personalized, biomechanics-specific ß-TCP bioceramic rod system (LP + 3DpbsBRS) as an alternative with less collateral damage. METHODS: Structure-specific finite element modelling was used to simulate femoral shaft non-union with bone defects and treatment with an LP only as the blank control. Then, the peak von Mises stress (VMS), the VMS distribution, and the plate displacement were determined to compare the effectiveness of LP + CBG (cancellous bone grafting), DP + CBG, and LP + 3DpbsBRS under 850 N of axial force. RESULTS: Our results indicated that the peak VMS was 260.2 MPa (LP + 3DpbsBRS), 249.6 MPa (MP in DP + CBG), 249.3 MPa (LP in DP + CBG), and 502.4 MPa (LP + CBG). The bending angle of the plate was 1.2° versus 1.0° versus 1.1° versus 2.3° (LP + 3DpbsBRS versus MP in DP + CBG versus LP in DP + CBG versus LP + CBG). CONCLUSION: The 3DpbsBRS in the LP + 3DpbsBRS group could replace the MP in the DP + CBG group by providing similar medial mechanical support. Furthermore, avoiding the use of an MP provides better protection of the soft tissue and vasculature.


Asunto(s)
Placas Óseas , Fémur/anatomía & histología , Análisis de Elementos Finitos , Fijación Interna de Fracturas/instrumentación , Fijación Interna de Fracturas/métodos , Fenómenos Biomecánicos , Tornillos Óseos , Fosfatos de Calcio , Fracturas del Fémur/cirugía , Humanos , Masculino , Modelos Anatómicos , Medicina de Precisión , Impresión Tridimensional , Estrés Mecánico , Adulto Joven
3.
Cell Commun Signal ; 17(1): 6, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30658653

RESUMEN

Throughout human life, bone is constantly in a delicate dynamic equilibrium of synthesis and resorption, hosting finely-tuned bone mineral metabolic processes for bone homeostasis by collaboration or symphony among several cell types including osteoclasts (OCs), osteoblasts (OBs), osteocytes (OYs), vascular endothelial cells (ECs) and their precursors. Beyond these connections, a substantial level of communication seems to occur between bone and other tissues, and together, they form an organic unit linked to human health and disease. However, the current hypothesis, which includes growth factors, hormones and specific protein secretion, incompletely explains the close connections among bone cells or between bone and other tissues. Extracellular vesicles (EVs) are widely-distributed membrane structures consisting of lipid bilayers, membrane proteins and intravesicular cargo (including proteins and nucleic acids), ranging from 30 nm to 1000 nm in diameter, and their characters have been highly conserved throughout evolution. EVs have targeting abilities and the potential to transmit multidimensional, abundant and complicated information, as powerful and substantial "dogrobbers" mediating intercellular communications. As research has progressed, EVs have gradually become thought of as "dogrobbers" in bone tissue-the "eternal battle field" -in a delicate dynamic balance of destruction and reconstruction. In the current review, we give a brief description of the major constituent cells in bone tissues and explore the progress of current research on bone-derived EVs. In addition, this review also discusses in depth not only potential directions for future research to breakthrough in this area but also problems existing in current research that need to be solved for a better understanding of bone tissues.


Asunto(s)
Huesos/metabolismo , Vesículas Extracelulares/metabolismo , Animales , Remodelación Ósea , Huesos/citología , Humanos , Modelos Biológicos
4.
Med Sci Monit ; 22: 1280-90, 2016 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-27086145

RESUMEN

BACKGROUND Concentrated leukocytes in leukocyte- and platelet-rich plasma (L-PRP) may deliver increased levels of pro-inflammatory cytokines to activate the NF-κB signaling pathway, to counter the beneficial effects of growth factors on osteoarthritic cartilage. However, to date no relevant studies have substantiated that in vivo. MATERIAL AND METHODS Autologous L-PRP and pure platelet-rich plasma (P-PRP) were prepared, measured for componential composition, and injected intra-articularly after 4, 5, and 6 weeks post-anterior cruciate ligament transection. Caffeic acid phenethyl ester (CAPE) was injected intraperitoneally to inhibit NF-κB activation. All rabbits were sacrificed after 8 weeks postoperative. Enzyme-linked immunosorbent assays were performed to determine interleukin 1ß (IL-1ß) and prostaglandin E2 (PGE2) concentrations in the synovial fluid, Indian ink staining was performed for gross morphological assessment, and hematoxylin and eosin staining and toluidine blue staining were performed for histological assessment. RESULTS Compared with L-PRP, P-PRP injections achieved better outcomes regarding the prevention of cartilage destruction, preservation of cartilaginous matrix, and reduction of IL-1ß and PGE2 concentrations. CAPE injections reversed the increased IL-1ß and PGE2 concentrations in the synovial fluid after L-PRP injections and improved the outcome of L-PRP injections to a level similar to P-PRP injections, while they had no influence on the therapeutic efficacy of P-PRP injections. CONCLUSIONS Concentrated leukocytes in L-PRP may release increased levels of pro-inflammatory cytokines to activate the NF-κB signaling pathway, to counter the beneficial effects of growth factors on osteoarthritic cartilage, and finally, result in a inferior efficacy of L-PRP to P-PRP for the treatment of osteoarthritis.


Asunto(s)
Transfusión de Leucocitos/métodos , Osteoartritis de la Rodilla/terapia , Transfusión de Plaquetas/métodos , Plasma Rico en Plaquetas , Animales , Citocinas/metabolismo , Dinoprostona/metabolismo , Femenino , Interleucina-1beta/metabolismo , FN-kappa B/metabolismo , Osteoartritis de la Rodilla/sangre , Osteoartritis de la Rodilla/metabolismo , Osteoartritis de la Rodilla/cirugía , Conejos , Distribución Aleatoria , Líquido Sinovial/metabolismo
5.
Bioact Mater ; 27: 409-428, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37152712

RESUMEN

Diabetic wound healing has become a serious healthcare challenge. The high-glucose environment leads to persistent bacterial infection and mitochondrial dysfunction, resulting in chronic inflammation, abnormal vascular function, and tissue necrosis. To solve these issues, we developed a double-network hydrogel, constructed with pluronic F127 diacrylate (F127DA) and hyaluronic acid methacrylate (HAMA), and enhanced by SS31-loaded mesoporous polydopamine nanoparticles (MPDA NPs). As components, SS31, a mitochondria-targeted peptide, maintains mitochondrial function, reduces mitochondrial reactive oxygen species (ROS) and thus regulates macrophage polarization, as well as promoting cell proliferation and migration, while MPDA NPs not only scavenge ROS and exert an anti-bacterial effect by photothermal treatment under near-infrared light irradiation, but also control release of SS31 in response to ROS. This F127DA/HAMA-MPDA@SS31 (FH-M@S) hydrogel has characteristics of adhesion, superior biocompatibility and mechanical properties which can adapt to irregular wounds at different body sites and provide sustained release of MPDA@SS31 (M@S) NPs. In addition, in a diabetic rat full thickness skin defect model, the FH-M@S hydrogel promoted macrophage M2 polarization, collagen deposition, neovascularization and wound healing. Therefore, the FH-M@S hydrogel exhibits promising therapeutic potential for skin regeneration.

6.
Mol Cell Biochem ; 370(1-2): 45-51, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22833359

RESUMEN

The compensatory angiogenesis that occurs after cerebral ischemia increases blood flow to the injured area and limits extension of the ischemic penumbra. In this way, it improves the local blood supply. Fostering compensatory angiogenesis is an effective treatment for ischemic cerebrovascular disease. However, angiogenesis in the adult organism is a complex, multi-step process, and the mechanisms underlying the regulation of angiogenesis are not well understood. Although Notch signaling reportedly regulates the vascularization process that occurs in ischemic tissues, little is known about the role of Notch signaling in the regulation of ischemia-induced angiogenesis after ischemic stroke. Recent research has indicated that miR-210, a hypoxia-induced microRNA, plays a crucial role in regulating the biological processes that occur in blood vessel endothelial cells under hypoxic conditions. This study was undertaken to investigate the role of miR-210 in regulating angiogenesis in response to brain ischemia injury and the role of the Notch pathway in the body's response. We found miR-210 to be significantly up-regulated in adult rat ischemic brain cortexes in which the expression of Notch1 signaling molecules was also increased. Hypoxic models of human umbilical vein endothelial cells (HUVE-12) were used to assess changes in miR-210 and Notch1 expression in endothelial cells. Results were consistent with in vivo findings. To determine the molecular mechanisms behind these phenomena, we transfected HUVE-12 cells with miR-210 recombinant lentiviral vectors. We found that miR-210 overexpression caused up-regulation of Notch1 signaling molecules and induced endothelial cells to migrate and form capillary-like structures on Matrigel. These data suggest that miR-210 is involved in the regulation of angiogenesis in response to ischemic injury to the brain. Up-regulation of miR-210 can activate the Notch signaling pathway, which may contribute to angiogenesis after cerebral ischemia.


Asunto(s)
Isquemia Encefálica/complicaciones , MicroARNs/metabolismo , Neovascularización Patológica/etiología , Neovascularización Patológica/genética , Receptor Notch1/metabolismo , Transducción de Señal , Animales , Isquemia Encefálica/genética , Isquemia Encefálica/patología , Hipoxia de la Célula/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/patología , Masculino , MicroARNs/genética , Microvasos/patología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/genética
7.
Biomaterials ; 283: 121465, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35286850

RESUMEN

Repair of critical-size bone defects in patients with diabetes mellitus (DM) has always been a challenge in clinical treatment. The process of bone defect regeneration can be impaired by underlying diseases including DM, but the mechanism remains unclear. In bone tissue engineering, the integration of bionic coatings and bioactive components into basic scaffolds are common function-enhancing strategies. Small extracellular vesicles (sEVs) have been applied for cell-free tissue regeneration in the last few years. We previously reported that sEVs have flexible and easily-extensible potential, through modular design and engineering modification. The impairment of CD31hiendomucinhi endothelial cells (ECs) whose function is coupling of osteogenesis and angiogenesis, is considered an important contributor to diabetic bone osteopathy, and ZEB1, which is highly expressed in CD31hiendomucinhi ECs, promotes angiogenesis-dependent bone formation. Thus we believe these ECs hold much promise for use in bone regeneration. In addition, c(RGDfC) has been reported to be a highly-effective peptide targeting αvß3, which is highly expressed in the bone microenvironment. In this study, we developed a hyaluronic acid (HA)/poly-L-lysine (PLL) layer-by-layer (LbL) self-assembly coating on ß-TCP (ß-tricalcium phosphate) scaffolds providing immobilization of modularized engineered sEVs (with c(RGDfC) surface functionalization and ZEB1 loading) to facilitate bone defect regeneration under DM conditions. RNA-seq was used to explore possible molecular mechanisms, and the therapeutic effects of bone regeneration were systematically evaluated in vitro and in vivo. Our data demonstrated that this strategy could be very effective in promoting the repair of diabetic bone defects, by enhancing angiogenesis, promoting osteogenesis and inhibiting osteoclast formation.


Asunto(s)
Diabetes Mellitus , Vesículas Extracelulares , Regeneración Ósea , Fosfatos de Calcio/química , Diabetes Mellitus/terapia , Células Endoteliales , Humanos , Osteogénesis , Ingeniería de Tejidos , Andamios del Tejido/química , Homeobox 1 de Unión a la E-Box con Dedos de Zinc
8.
iScience ; 24(3): 102200, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33733065

RESUMEN

Functional healing of tendon injuries remains a great challenge. Small extracellular vesicles (sEVs) have received attention as pro-regenerative agents. H19 overexpression could bring tendon regenerative ability, but the mechanism is still not fully elucidated, and reliable method for delivery of long non-coding RNAs (LncRNAs) was demanded. We identified the downstream mechanism of H19, the activation of yes-associated protein (YAP) via the H19-PP1-YAP axis. We established tendon stem/progenitor cells (TSPCs) stably overexpressing H19 with CRISPR-dCas9-based hnRNP A2/B1 activation (H19-CP-TSPCs). H19-OL-sEVs (H19 "overloading" sEVs) could be produced effectively from H19-CP-TSPCs. Only H19-OL-sEVs were able to significantly load large amounts of H19 rather than other competitors, and the potential of H19-OL-sEVs to promote tendon healing was far better than that of other competitors. Our study established a relatively reliable method for enrichment of LncRNAs into sEVs, providing new hints for modularized sEV-based therapies, and modularized sEVs represented a potential strategy for tendon regeneration.

9.
Bioact Mater ; 6(12): 4455-4469, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34027234

RESUMEN

Osteoarthritis (OA), characterized by chondrocyte apoptosis and disturbance of the balance between catabolism and anabolism of the extracellular matrix (ECM), is the most common age-related degenerative joint disease worldwide. As sleep has been found to be beneficial for cartilage repair, and circular RNAs (circRNAs) have been demonstrated to be involved in the pathogenesis of OA, we performed RNA sequencing (RNA-seq), and found circRNA3503 was significantly increased after melatonin (MT)-induced cell sleep. Upregulation of circRNA3503 expression completely rescued the effects of interleukin-1ß (IL-1ß), which was used to simulate OA, on apoptosis, ECM degradation- and synthesis-related genes. Mechanistically, circRNA3503 acted as a sponge of hsa-miR-181c-3p and hsa-let-7b-3p. Moreover, as we previously showed that small extracellular vesicles (sEVs) derived from synovium mesenchymal stem cells (SMSCs) can not only successfully deliver nucleic acids to chondrocytes, but also effectively promote chondrocyte proliferation and migration, we assessed the feasibility of sEVs in combination with sleep-related circRNA3503 as an OA therapy. We successfully produced and isolated circRNA3503-loaded sEVs (circRNA3503-OE-sEVs) from SMSCs. Then, poly(D,l-lactide)-b-poly(ethylene glycol)-b-poly(D,l-lactide) (PDLLA-PEG-PDLLA, PLEL) triblock copolymer gels were used as carriers of sEVs. Through in vivo and in vitro experiments, PLEL@circRNA3503-OE-sEVs were shown to be a highly-effective therapeutic strategy to prevent OA progression. Through multiple pathways, circRNA3503-OE-sEVs alleviated inflammation-induced apoptosis and the imbalance between ECM synthesis and ECM degradation by acting as a sponge of hsa-miR-181c-3p and hsa-let-7b-3p. In addition, circRNA3503-OE-sEVs promoted chondrocyte renewal to alleviate the progressive loss of chondrocytes. Our results highlight the potential of PLEL@circRNA3503-OE-sEVs for preventing OA progression.

10.
J Orthop Surg Res ; 15(1): 144, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32293488

RESUMEN

OBJECTIVE: Atrophic distal femur non-union with bone defect (ADFNBD) has been a worldwide challenge to treat due to the associated biological and mechanical problems. The purpose of this study was to introduce a new solution involving the use of a J-shaped iliac crest bone graft (J-bone) combined with double-plate (DP) in the treatment of femoral non-union. METHODS: Clinically, 18 patients with ADFNBD were included in this retrospective study and were treated with a combination of J-bone graft and DP. The average follow-up time was 22.1 ± 5.5 months (range, 14 to 34 months). The imaging information and knee joint activity tests and scores were used to evaluate the time to weight-bearing, the time to non-union healing, and the knee joint mobility. A finite element analysis was used to evaluate the differences between the following: (1) the use of a lateral locking plate (LLP) only group (LLP-only), (2) a DP only group (DP-only), (3) a DP with a J-bone group (DP+J-bone), and (4) an LLP with a J-bone group (LLP+J-bone) in the treatment of ADFNBD. A finite element analysis ABAQUS 6.14 (Dassault systems, USA) was used to simulate the von Mises stress distribution and model displacement of the plate during standing and normal walking. RESULT: All patients with non-union and bone defect in the distal femur achieved bone healing at an average of 22.1 ± 5.5 months (range, 14 to 34 months) postoperatively. The average healing time was 6.72 ± 2.80 months. The knee Lysholm score was significantly improved compared with that before surgery. Under both 750 N and 1800 N axial stress, the maximum stress with the DP+J-bone structure was less than that of the LLP+J-bone and DP-only structures, and the maximum stress of J-bone in the DP+J-bone was significantly less than that of the LLP+J-bone+on structure. The fracture displacement of the DP+J-bone structure was also smaller than that of the LLP+J-bone and DP-only structures. CONCLUSION: J-bone combined with DP resulted in less maximum stress and less displacement than did a J-bone combined with an LLP or a DP-only graft for the treatment of ADFNBD. This procedure was associated with less surgical trauma, early rehabilitation exercise after surgery, a high bone healing rate, and a satisfactory rate of functional recovery. Therefore, a combination of J-bone and DP is an effective and important choice for the treatment of ADFNBD.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Placas Óseas , Trasplante Óseo/métodos , Fracturas del Fémur/diagnóstico por imagen , Fracturas del Fémur/cirugía , Fracturas no Consolidadas/diagnóstico por imagen , Adulto , Atrofia/diagnóstico por imagen , Atrofia/fisiopatología , Femenino , Fracturas del Fémur/fisiopatología , Fémur/diagnóstico por imagen , Fémur/lesiones , Fémur/fisiología , Análisis de Elementos Finitos , Estudios de Seguimiento , Curación de Fractura/fisiología , Fracturas no Consolidadas/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Adulto Joven
11.
Adv Biosyst ; 4(9): e2000152, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32803878

RESUMEN

The prognosis for osteosarcoma (OS) continues to be unsatisfactory due to tumor recurrence as a result of metastasis and drug resistance. Several studies have shown that Ewing sarcoma associated transcript 1 (EWSAT1) plays an important role in the progression of OS. Exosomes (Exos) act as important carriers in intercellular communication and play an important role in the tumor microenvironment, especially in tumor-induced angiogenesis. Nonetheless, the specific mechanism via which EWSAT1 and Exos regulate OS progression is unknown, and whether they can be effective therapeutic targets also requires verification. Hence, in this study, it is aimed to investigate the mechanisms of action of EWSAT1 and Exos. EWSAT1 significantly promotes proliferation, migration, colony formation, and survival of OS. EWSAT1 regulates OS-induced angiogenesis via two mechanisms, called the "double stacking effect," which is a combination of the increase in sensitivity/reactivity of vascular endothelial cells triggered by Exos-carrying EWSAT1, and the EWSAT1-induced increase in angiogenic factor secretion. In vivo experiments further validates the "double stacking effect" and shows that EWSAT1-KD effectively inhibits tumor growth in OS. The above observations indicate that EWSAT1 can be used as not only a potential diagnostic and prognostic marker, but also as a precise therapeutic target for OS.


Asunto(s)
Exosomas/metabolismo , Neovascularización Patológica/metabolismo , Osteosarcoma , ARN Largo no Codificante , Animales , Línea Celular Tumoral , Progresión de la Enfermedad , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Osteosarcoma/genética , Osteosarcoma/metabolismo , Osteosarcoma/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
12.
Wounds ; 21(10): 280-5, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25902712

RESUMEN

Chronic wounds are a frequent problem in developing countries, are often difficult to heal because they lack the necessary growth factors to maintain the healing process, and are frequently complicated by superinfection. Conventional therapies such as dressings, surgical debridement, and even skin grafting cannot provide satisfactory healing since these treatments are not able to provide enough necessary growth factors to modulate the healing process. Platelet-rich plasma (PRP), as a concentrate of platelets, releases a high concentration of multiple growth factors that can modulate healing processes. Furthermore, PRP also contains a high level of leukocytes, which can inhibit infection. PRP has been widely used in many clinical applications. Three patients with large chronic wounds were treated with PRP and achieved good clinical outcomes.

13.
Int J Biol Sci ; 14(12): 1610-1620, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30416375

RESUMEN

The circadian rhythm (CR) is a set of autonomous endogenous oscillators. Exposure to the 24-hour day-night cycle synchronizes our CR system, maintaining homeostasis and human health. Several mechanisms for the CR system have been proposed, including those underlying the function (transcriptional-translational negative-feedback loops, or TTFLs), mechanisms regulating the TTFLs, and the mechanism by which the "server clock" is synchronized to environmental time. Several pathways downstream of the "server clock" perform well-characterized biological functions. However, the synchronization between the "server clock" (the endogenous master clock seated in the suprachiasmatic nucleus within the hypothalamus) and the "client clock" (imbedded in nearly every cell in the form of interlocking TTFLs) is difficult to explain with current theories. Extracellular vesicles (EVs), which are involved in intercellular communication and have recently been found to participate in regulation of the "client clock", might be the answer to this question. In this review, we summarize the current knowledge of CRs, TTFLs, and EVs, examine research findings about the functions of EVs in the CR system, and discuss the issues requiring attention in future research.


Asunto(s)
Ritmo Circadiano/fisiología , Vesículas Extracelulares/metabolismo , Animales , Ritmo Circadiano/genética , Exosomas/metabolismo , Humanos , Hipotálamo/metabolismo , Procesamiento Proteico-Postraduccional/genética , Procesamiento Proteico-Postraduccional/fisiología , ARN no Traducido/genética , Núcleo Supraquiasmático/metabolismo
14.
J Extracell Vesicles ; 7(1): 1508271, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30151077

RESUMEN

Extracellular vesicles (EVs), which can be found in almost all body fluids, consist of a lipid bilayer enclosing proteins and nucleic acids from their cells of origin. EVs can transport their cargo to target cells and have therefore emerged as key players in intercellular communication. Their potential as either diagnostic and prognostic biomarkers or therapeutic drug delivery systems (DDSs) has generated considerable interest in recent years. However, conventional methods used to study EVs still have significant limitations including the time-consuming and low throughput techniques required, while at the same time the demand for better research tools is getting stronger and stronger. In the past few years, microfluidics-based technologies have gradually emerged and have come to play an essential role in the isolation, detection and analysis of EVs. Such technologies have several advantages, including low cost, low sample volumes, high throughput and precision. This review summarizes recent advances in microfluidics-based technologies, compares conventional and microfluidics-based technologies, and includes a brief survey of recent progress towards integrated "on-a-chip" systems. In addition, this review also discusses the potential clinical applications of "on-a-chip" systems, including both "liquid biopsies" for personalized medicine and DDS devices for precision medicine, and then anticipates the possible future participation of cloud-based portable disease diagnosis and monitoring systems, possibly with the participation of artificial intelligence (AI).

15.
Adv Sci (Weinh) ; 5(2): 1700449, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29619297

RESUMEN

Extracellular vesicles (EVs) are ubiquitous nanosized membrane vesicles consisting of a lipid bilayer enclosing proteins and nucleic acids, which are active in intercellular communications. EVs are increasingly seen as a vital component of many biological functions that were once considered to require the direct participation of stem cells. Consequently, transplantation of EVs is gradually becoming considered an alternative to stem cell transplantation due to their significant advantages, including their relatively low probability of neoplastic transformation and abnormal differentiation. However, as research has progressed, it is realized that EVs derived from native-source cells may have various shortcomings, which can be corrected by modification and optimization. To date, attempts are made to modify or improve almost all the components of EVs, including the lipid bilayer, proteins, and nucleic acids, launching a new era of modularized EV therapy through the "modular design" of EV components. One high-yield technique, generating EV mimetic nanovesicles, will help to make industrial production of modularized EVs a reality. These modularized EVs have highly customized "modular design" components related to biological function and targeted delivery and are proposed as a promising approach to achieve personalized and precision medicine.

16.
Drug Deliv ; 25(1): 241-255, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29334272

RESUMEN

Diabetic wounds, one of the most enervating complications of diabetes mellitus, affect millions of people worldwide annually. Vascular insufficiency, caused by hyperglycemia, is one of the primary causes and categories of diabetic impaired wound healing. Recently, long noncoding RNA (LncRNA)-H19, which is significantly decreased in diabetes and may be crucial in triggering angiogenesis, has attracted increasing interest. The possible relationship between the decrease of LncRNA-H19 and the impairment of angiogenesis in diabetes could involve impairment of the insulin-phosphatidylinositol 3-kinase (PI3K)-Akt pathway via the interdiction of LncRNA-H19. Thus, a therapeutic strategy utilizing LncRNA-H19 delivery is feasible. In this study, we investigated the possibility of using high-yield extracellular vesicle-mimetic nanovesicles (EMNVs) as an effective nano-drug delivery system for LncRNA, and studied the function of EMNVs with a high content of LncRNA-H19 (H19EMNVs). The results, which were exciting, showed that H19EMNVs had a strong ability to neutralize the regeneration-inhibiting effect of hyperglycemia, and could remarkably accelerate the healing processes of chronic wounds. Our results suggest that bioengineered EMNVs can serve as a powerful instrument to effectively deliver LncRNA and will be an extremely promising multifunctional drug delivery system in the immediate future.


Asunto(s)
Complicaciones de la Diabetes/tratamiento farmacológico , Diabetes Mellitus/tratamiento farmacológico , Portadores de Fármacos/química , Vesículas Extracelulares/metabolismo , Nanopartículas/química , ARN Largo no Codificante/administración & dosificación , Cicatrización de Heridas/efectos de los fármacos , Línea Celular , Complicaciones de la Diabetes/metabolismo , Diabetes Mellitus/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Células HEK293 , Humanos , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Heridas y Lesiones/tratamiento farmacológico , Heridas y Lesiones/metabolismo
17.
Int J Mol Med ; 41(6): 3433-3447, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29512684

RESUMEN

Glucocorticoids (GCs) are the most common cause of atraumatic osteonecrosis of the femoral head (ONFH) because their effect compromises the osteogenic capability of bone marrow­derived mesenchymal stem cells (BMSCs). Valproic acid (VPA) is a widely used anti­epileptic and anti­convulsant drug. Previous studies have reported that VPA promotes osteogenic differentiation of MSCs in vitro and osteogenesis in vivo as a histone deacetylase (HDAC) inhibitor. The purpose of the present study was to investigate the efficacy of VPA as a precautionary treatment of ONFH after GC treatment in rats. In vitro, the effect of VPA, dexamethasone or a combination treatment of the two on the proliferation and osteogenic differentiation of human BMSCs was assessed using a Cell Counting Kit­8 and apoptosis assays, and by measuring the expression of proteins associated with osteogenesis. In vivo, a GC­induced ONFH model was established in rats and VPA was added during GC treatment to investigate the preventive effect of VPA against ONFH. Rat BMSCs were also extracted to investigate the osteogenic capacity. The results of micro­computed tomography scanning, angiography of the femoral head and histological and immunohistochemical analyses indicated that 11 of 15 rats induced with methylprednisolone (MP) presented with ONFH, while only 2 of 15 rats treated with a combination of MP and VPA developed ONFH. VPA produced beneficial effects on subchondral bone trabeculae in the femoral head with significant preservation of bone volume and blood supply, as well as improved osteogenic capability of BMSCs compared with those in rats treated with GC alone. In conclusion, VPA attenuated the inhibitory effect of GC on BMSC proliferation and osteogenesis by inhibiting apoptosis and elevating the expression of proteins associated with osteogenesis, which may contribute to the prevention of GC­induced ONFH in rats.


Asunto(s)
Ácido Valproico/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Necrosis de la Cabeza Femoral/tratamiento farmacológico , Glucocorticoides/uso terapéutico , Metilprednisolona/uso terapéutico , Osteogénesis/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Microtomografía por Rayos X
18.
Int J Biol Sci ; 13(7): 828-834, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28808416

RESUMEN

Extracellular vesicles (EVs) are a newly-discovered way by which cells communicate with their neighbors, as well as transporting cargos which once were considered to be limited by membrane barriers, including membrane proteins, cytosolic proteins and RNA. The discovery of platelet-derived EVs (P-EVs), the most abundant EVs in human blood, has been a very tortuous process. At first, P-EVs were identified as nothing but 'platelet dust', and subsequent research did not progress smoothly because of the limited research techniques to study EVs. Following leaps and bounds of technical progress in studying EVs, more and more attractive features of P-EVs were revealed and they began to be further researched. The aim of this review is to present the latest knowledge about the role of P-EVs in tissue repair and tumor progression. The potential mechanism of P-EVs is emphasized. Then the limitations of the present study and future research directions are discussed.


Asunto(s)
Plaquetas , Vesículas Extracelulares/fisiología , Humanos , Neoplasias/terapia
19.
Theranostics ; 7(1): 81-96, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28042318

RESUMEN

Chronic wounds have become an economic, social, and public health burden and need advanced treatment. Platelet-rich plasma (PRP) has been used extensively in treatment of chronic wounds because it contains an abundance of growth factors secreted by platelets. The exosomes derived from PRP (PRP-Exos) have been proven to encapsulate principal growth factors from platelets. This study is the first to show that these exosomes may exert the function of PRP. PRP-Exos can effectively induce proliferation and migration of endothelial cells and fibroblasts to improve angiogenesis and re-epithelialization in chronic wounds. We regulated YAP to verify the PRP-Exos-dependent effect on fibroblast proliferation and migration through YAP activation. In vivo, we observed the cutaneous healing process in chronic wounds treated with PRP-Exos in a diabetic rat model. We provide evidence of the probable molecular mechanisms underlying the PRP effect on healing of chronic ulcers and describe a promising resource of growth factors from exosomes without species restriction.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Complicaciones de la Diabetes/terapia , Pie Diabético/terapia , Células Epiteliales/fisiología , Exosomas/metabolismo , Plasma Rico en Plaquetas/química , Cicatrización de Heridas , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Ratas , Proteínas Señalizadoras YAP
20.
Theranostics ; 7(1): 180-195, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28042326

RESUMEN

OBJECTIVES: Osteoarthritis (OA) is the most common joint disease throughout the world. Exosomes derived from miR-140-5p-overexpressing synovial mesenchymal stem cells (SMSC-140s) may be effective in treating OA. We hypothesized that exosomes derived from SMSC-140 (SMSC-140-Exos) would enhance the proliferation and migration abilities of articular chondrocytes (ACs) without harming extracellular matrix (ECM) secretion. METHODS: SMSCs were transfected with or without miR-140-5p. Exosomes derived from SMSCs or SMSC-140s (SMSC-Exos or SMSC-140-Exos) were isolated and identified. Proliferation, migration and ECM secretion were measured in vitro and compared between groups. The mechanism involving alternative Wnt signalling and activation of Yes-associated protein (YAP) was investigated using lentivirus, oligonucleotides or chemical drugs. The preventative effect of exosomes in vivo was measured using Safranin-O and Fast green staining and immunohistochemical staining. RESULTS: Wnt5a and Wnt5b carried by exosomes activated YAP via the alternative Wnt signalling pathway and enhanced proliferation and migration of chondrocytes with the side-effect of significantly decreasing ECM secretion. Highly-expressed miR-140-5p blocked this side-effect via RalA. SMSC-140-Exos enhanced the proliferation and migration of ACs without damaging ECM secretion in vitro, while in vivo, SMSC-140-Exos successfully prevented OA in a rat model. CONCLUSIONS: These findings highlight the promising potential of SMSC-140-Exos in preventing OA. We first found a potential source of exosomes and studied their merits and shortcomings. Based on our understanding of the molecular mechanism, we overcame the shortcomings by modifying the exosomes. Such exosomes derived from modified cells hold potential as future therapeutic strategies.


Asunto(s)
Cartílago/fisiología , Exosomas/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , Osteoartritis/prevención & control , Regeneración , Animales , Modelos Animales de Enfermedad , Humanos , Articulación de la Rodilla/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA