Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Mater ; 22(2): 207-215, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36536139

RESUMEN

Competition between ground states at phase boundaries can lead to significant changes in properties under stimuli, particularly when these ground states have different crystal symmetries. A key challenge is to stabilize and control the coexistence of symmetry-distinct phases. Using BiFeO3 layers confined between layers of dielectric TbScO3 as a model system, we stabilize the mixed-phase coexistence of centrosymmetric and non-centrosymmetric BiFeO3 phases at room temperature with antipolar, insulating and polar semiconducting behaviour, respectively. Application of orthogonal in-plane electric (polar) fields results in reversible non-volatile interconversion between the two phases, hence removing and introducing centrosymmetry. Counterintuitively, we find that an electric field 'erases' polarization, resulting from the anisotropy in octahedral tilts introduced by the interweaving TbScO3 layers. Consequently, this interconversion between centrosymmetric and non-centrosymmetric phases generates changes in the non-linear optical response of over three orders of magnitude, resistivity of over five orders of magnitude and control of microscopic polar order. Our work establishes a platform for cross-functional devices that take advantage of changes in optical, electrical and ferroic responses, and demonstrates octahedral tilts as an important order parameter in materials interface design.

2.
Inorg Chem ; 62(11): 4476-4484, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36893257

RESUMEN

Metal-organic framework (MOF) materials have broad application prospects in catalysis because of their ordered structure and molecular adjustability. However, the large volume of bulky MOF usually leads to insufficient exposure of the active sites and the obstruction of charge/mass transfer, which greatly limits their catalytic performance. Herein, we developed a simple graphene oxide (GO) template method to fabricate ultrathin Co-metal-organic layer (2.0 nm) on reduced GO (Co-MOL@r-GO). The as-synthesized hybrid material Co-MOL@r-GO-2 exhibits highly efficient photocatalytic performance for CO2 reduction, and the CO yield can reach as high as 25,442 µmol/gCo-MOL, which is over 20 times higher than that of the bulky Co-MOF. Systematic investigations demonstrate that GO can act as a template for the synthesis of the ultrathin Co-MOL with more active sites and can be used as the electron transport medium between the photosensitizer and the Co-MOL to enhance the catalytic activity for CO2 photoreduction.

3.
Nano Lett ; 22(22): 8892-8899, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36331549

RESUMEN

Polar topologies have received extensive attention due to their exotic configurations and functionalities. Understanding their responsive behaviors to external stimuli, especially thermal excitation, is highly desirable to extend their applications to high temperature, which is still unclear. Here, combining in situ transmission electron microscopy and phase-field simulations, the thermal dynamics of the flux-closure domains were illuminated in PbTiO3/SrTiO3 multilayers. In-depth analyses suggested that the topological transition processes from a/c domains to flux-closure quadrants were influenced by the boundary conditions of PbTiO3 layers. The symmetrical boundary condition stabilized the flux-closure domains at higher temperature than in the asymmetrical case. Furthermore, the reversible thermal responsive behaviors of the flux-closure domains displayed superior thermal stability, which maintained robust up to 450 °C (near the Curie temperature). This work provides new insights into the dynamics of polar topologies under thermal excitation and facilitates their applications as nanoelectronics under extreme conditions.

4.
Anal Chem ; 94(33): 11483-11491, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35968807

RESUMEN

Identification of small-molecule binding sites in proteins is of great significance in analysis of protein function and drug design. Modified sites can be recognized via proteolytic cleavage followed by liquid chromatography-mass spectrometry (LC-MS); however, this has always been impeded by the complexity of peptide mixtures and the elaborate synthetic design for tags. Here, we demonstrate a novel technique for identifying protein binding sites using a deep learning-based label-free surface-enhanced Raman scattering (SERS) screening (DLSS) strategy. In DLSS, the deep learning model that was trained with large SERS signals could detect signal features of small molecules with high accuracy (>99%). Without any secondary tag, the small molecules are directly complexed with proteins. After proteolysis and LC, SERS signals of all LC fractions are collected and input into the model, whereby the fractions containing the small-molecule-modified peptides can be recognized by the model and sent to MS/MS to identify the binding site(s). By using an automated DLSS system, we successfully identified the modification sites of fomepizole in alcohol dehydrogenase, which is coordinated with zinc along with three peptides. We also showed that the DLSS strategy works for identification of amino-acid residues that covalently bond with ibrutinib in Bruton tyrosine kinase. These results suggest that the DLSS strategy, which provides high molecular recognition capability to LC-MS analysis, has potential in drug discovery, proteomics, and metabolomics.


Asunto(s)
Aprendizaje Profundo , Espectrometría de Masas en Tándem , Sitios de Unión , Péptidos/análisis , Proteínas , Espectrometría Raman/métodos
5.
Chemistry ; 23(37): 8871-8878, 2017 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-28337807

RESUMEN

Polyoxometalates (POM) have already been confirmed to act as effective electron-transfer mediators for improving the power conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs) based on previous studies. However, the improvement may be limited by the agglomeration of the polyoxoanions. In this paper, the previous synthesis strategy is improved upon by breaking the metal-organic frameworks (MOFs) with POMs as the secondary building units ([Ni(bpp)(H2 O)2 ]3 [P2 W18 O62 ]⋅24 H2 O (1) (bpp=1,3-bis(4-pyridyl)propane) and H6 [Cu3 (H2 O)6 (P2 W18 O62 )2 (3-dpye)6 ]⋅28 H2 O (2) (3-dpye=N,N'-bis(3-pyridinecarboxamide)-1,2-ethane)) to design and synthesize small sized and highly disperse POM nanoparticles by means of compositing with TiO2 , through calcination to remove the organic ligand. TEM and element mapping confirm that P2 W18 O626- (denoted as P2 W18 ) nanoparticles with the diameter of ≈1 nm are uniformly distributed in TiO2 composites. The loading amount (wt. %) of POM in MOFs reaches 75.67 %. The small sized and highly disperse P2 W18 nanoparticles may provide more active sites and specific surface areas for improving the PCE of DSSCs. Finally, the investigations indicate that the PCE of composite P2 W18 ⋅NiO@TiO2 photoanodes is up to 7.56 %, which was 26 % higher than the pristine TiO2 based photoanodes.

6.
Chemistry ; 22(10): 3234-3238, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26699662

RESUMEN

In light of the serious challenge of severe global energy shortages, p-type dye-sensitized solar cells (p-DSSCs) have attracted increasing levels of interest. The potential of three Keggin-type transition metal-substituted polyoxometalates, TBA8 Na2 [SiW9 O37 {Co(H2 O)3 }]⋅ 11 H2 O (SiW9 Co3 ), TBA4 [(SiO4 )W10 MnIII2 O36 H6 ]⋅1.5 CH3 CN⋅ 2 H2 O (SiW10 MnIII2 ), and TBA3.5 H5.5 [(SiO4 )W10 MnIII/IV2 O36 ]⋅ 10 H2 O⋅0.5 CH3 CN (SiW10 MnIII/IV2 ) has been explored as pure inorganic dye photosensitizers for p-DSSCs (TBA=(n-C4 H9 )4 N+ ). The three dyes show overall conversion efficiencies of 0.038, 0.029, and 0.027 %, respectively, all of which are higher than that of coumarin 343 (0.017 %). These polyoxometalates are the first three pure inorganic dyes reported for use with p-DSSCs and therefore demonstrate a new strategy for designing efficient dyes, especially pure inorganic dyes. Moreover, they broaden the range of applications for polyoxometalates.

7.
Nat Commun ; 14(1): 4178, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443322

RESUMEN

In ferroelectrics, complex interactions among various degrees of freedom enable the condensation of topologically protected polarization textures. Known as ferroelectric solitons, these particle-like structures represent a new class of materials with promise for beyond-CMOS technologies due to their ultrafine size and sensitivity to external stimuli. Such polarization textures have scarcely been demonstrated in multiferroics. Here, we present evidence for ferroelectric solitons in (BiFeO3)/(SrTiO3) superlattices. High-resolution piezoresponse force microscopy and Cs-corrected high-angle annular dark-field scanning transmission electron microscopy reveal a zoo of topologies, and polarization displacement mapping of planar specimens reveals center-convergent/divergent topological defects as small as 3 nm. Phase-field simulations verify that some of these structures can be classed as bimerons with a topological charge of ±1, and first-principles-based effective Hamiltonian computations show that the coexistence of such structures can lead to non-integer topological charges, a first observation in a BiFeO3-based system. Our results open new opportunities in multiferroic topotronics.


Asunto(s)
Bismuto , Tecnología , Microscopía de Fuerza Atómica
8.
Small Methods ; 6(9): e2200486, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35900067

RESUMEN

The exotic topological phase is attracting considerable attention in condensed matter physics and materials science over the past few decades due to intriguing physical insights. As a combination of "topology" and "ferroelectricity," the ferroelectric (polar) topological structures are a fertile playground for emergent phenomena and functionalities with various potential applications. Herein, the review starts with the universal concept of the polar topological phase and goes on to briefly discuss the important role of computational tools such as phase-field simulations in designing polar topological phases in oxide heterostructures. In particular, the history of the development of phase-field simulations for ferroelectric oxide heterostructures is highlighted. Then, the current research progress of polar topological phases and their emergent phenomena in ferroelectric functional oxide heterostructures is reviewed from a theoretical perspective, including the topological polar structures, the establishment of phase diagrams, their switching kinetics and interconnections, phonon dynamics, and various macroscopic properties. Finally, this review offers a perspective on the future directions for the discovery of novel topological phases in other ferroelectric systems and device design for next-generation electronic device applications.

9.
ACS Nano ; 12(11): 11098-11105, 2018 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-30352155

RESUMEN

Strongly correlated oxides exhibit multiple degrees of freedoms, which can potentially mediate exotic phases with exciting physical properties, such as the polar vortex recently found in ferroelectric oxide films. A polar vortex is stabilized by competition between charge, lattice, and/or orbital degrees of freedom, which displays vortex-ferroelectric phase transitions and emergent chirality, making it a potential candidate for designing information storage and processing devices. Here, by a combination of controlled film growth and aberration-corrected scanning transmission electron microscopy, we obtain nanoscale vortex arrays in [110]-oriented BiFeO3 films. These vortex arrays are stabilized in ultrathin BiFeO3 layers sandwiched by two coherently grown orthorhombic scandate layers, exhibiting a ferroelectric morphotropic phase boundary constituted by a mixed-phase structure of polar orthorhombic BiFeO3 and rhombohedral BiFeO3. Clear polarization switching and piezoelectric signals were observed in these multilayers as revealed by piezoresponse force microscopy. This work presents a feature of a polar vortex in BiFeO3 films showing morphotropic phase boundary character, which offers a potential degree of manipulating phase components and properties of ferroelectric topological structures.

10.
ACS Nano ; 12(4): 3681-3688, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29630820

RESUMEN

Multiple polar states and giant piezoelectric responses could be driven by polarization rotation in ferroelectric films, which have potential functionalities in modern material applications. Although theoretical calculations have predicted polarization rotation in pure PbTiO3 films without domain walls and strains, direct experiment has rarely confirmed such polar states under this condition. Here, we observed that interfacial oxygen octahedral coupling (OOC) can introduce an oxygen octahedral rotation, which induces polarization rotation in single domain PbTiO3 films with negligible strains. We have grown ultrathin PbTiO3 films (3.2 nm) on both SrTiO3 and Nb:SrTiO3 substrates and applied aberration-corrected scanning transmission electron microscopy (STEM) to study the interfacial OOC effect. Atomic mappings unit cell by unit cell demonstrate that polarization rotation occurs in PbTiO3 films on both substrates. The distortion of oxygen octahedra in PbTiO3 is proven by annular bright-field STEM. The critical thickness for this polarization rotation is about 4 nm (10 unit cells), above which polarization rotation disappears. First-principles calculations manifest that the interfacial OOC is responsible for the polarization rotation state. These results may shed light on further understanding the polarization behavior in ultrathin ferroelectrics and be helpful to develop relevant devices as polarization rotation is known to be closely related to superior electromechanical responses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA