Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34074766

RESUMEN

Altered cellular metabolism in kidney proximal tubule (PT) cells plays a critical role in acute kidney injury (AKI). The transcription factor Krüppel-like factor 6 (KLF6) is rapidly and robustly induced early in the PT after AKI. We found that PT-specific Klf6 knockdown (Klf6PTKD) is protective against AKI and kidney fibrosis in mice. Combined RNA and chromatin immunoprecipitation sequencing analysis demonstrated that expression of genes encoding branched-chain amino acid (BCAA) catabolic enzymes was preserved in Klf6PTKD mice, with KLF6 occupying the promoter region of these genes. Conversely, inducible KLF6 overexpression suppressed expression of BCAA genes and exacerbated kidney injury and fibrosis in mice. In vitro, injured cells overexpressing KLF6 had similar decreases in BCAA catabolic gene expression and were less able to utilize BCAA. Furthermore, knockdown of BCKDHB, which encodes one subunit of the rate-limiting enzyme in BCAA catabolism, resulted in reduced ATP production, while treatment with BCAA catabolism enhancer BT2 increased metabolism. Analysis of kidney function, KLF6, and BCAA gene expression in human chronic kidney disease patients showed significant inverse correlations between KLF6 and both kidney function and BCAA expression. Thus, targeting KLF6-mediated suppression of BCAA catabolism may serve as a key therapeutic target in AKI and kidney fibrosis.


Asunto(s)
Lesión Renal Aguda/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Riñón/lesiones , Riñón/metabolismo , Factor 6 Similar a Kruppel/metabolismo , Lesión Renal Aguda/patología , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Inflamación , Riñón/patología , Túbulos Renales Proximales/metabolismo , Factor 6 Similar a Kruppel/genética , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Factores de Transcripción/metabolismo
2.
Xenobiotica ; 53(6-7): 474-483, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37819730

RESUMEN

The in vitro metabolism of hirsutine was determined using liver microsomes and human recombinant cytochrome P450 enzymes. Under the current conditions, a total of 14 phase I metabolites were tentatively identified.Ketoconazole showed significant inhibitory effect on the metabolism of hirsutine. Human recombinant cytochrome P450 enzyme analysis revealed that metabolism of hirsutine was mainly catalysed by CYP3A4.Our data revealed that hirsutine was metabolised via mono-oxygenation, di-oxygenation, N-oxygenation, dehydrogenation, demethylation and hydrolysis.In glutathione (GSH)-supplemented liver microsomes, four GSH adducts were identified. Hirsutine underwent facile P450-mediated metabolic activation, forming reactive 3-methyleneindolenine and iminoquinone intermediates.This study provided valuable information on the metabolic fates of hirsutine in liver microsomes, which would aid in understanding the hepatotoxicity caused by hirsutine or hirsutine-containing herb preparation.


Asunto(s)
Alcaloides , Antineoplásicos , Uncaria , Humanos , Alcaloides/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Antineoplásicos/metabolismo , Microsomas Hepáticos/metabolismo
3.
Kidney Int ; 102(1): 58-77, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35483525

RESUMEN

Thrombotic microangiopathy (TMA) in the kidney represents the most severe manifestation of kidney microvascular endothelial injury. Despite the source of the inciting event, the diverse clinical forms of kidney TMA share dysregulation of endothelial cell transcripts and complement activation. Here, we show that endothelial-specific knockdown of Krüppel-Like Factor 4 (Klf4)ΔEC, an anti-inflammatory and antithrombotic zinc-finger transcription factor, increases the susceptibility to glomerular endothelial injury and microangiopathy in two genetic murine models that included endothelial nitric oxide synthase knockout mice and aged mice (52 weeks), as well as in a pharmacologic model of TMA using Shiga-toxin 2. In all models, Klf4ΔEC mice exhibit increased pro-thrombotic and pro-inflammatory transcripts, as well as increased complement factors C3 and C5b-9 deposition and histologic features consistent with subacute TMA. Interestingly, complement activation in Klf4ΔEC mice was accompanied by reduced expression of a key KLF4 transcriptional target and membrane bound complement regulatory gene, Cd55. To assess a potential mechanism by which KLF4 might regulate CD55 expression, we performed in silico chromatin immunoprecipitation enrichment analysis of the CD55 promotor and found KLF4 binding sites upstream from the CD55 transcription start site. Using patient-derived kidney biopsy specimens, we found glomerular expression of KLF4 and CD55 was reduced in patients with TMA as compared to control biopsies of the unaffected pole of patient kidneys removed due to kidney cancer. Thus, our data support that endothelial Klf4 is necessary for maintenance of a quiescent glomerular endothelial phenotype and its loss increases susceptibility to complement activation and induction of prothrombotic and pro-inflammatory pathways.


Asunto(s)
Factor 4 Similar a Kruppel , Microangiopatías Trombóticas , Animales , Activación de Complemento , Proteínas del Sistema Complemento/metabolismo , Endotelio , Humanos , Glomérulos Renales/patología , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Microangiopatías Trombóticas/patología
4.
Aquac Nutr ; 2022: 8596427, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36860472

RESUMEN

Niacin is indispensable for the growth and development of aquatic animals. However, the correlations between dietary niacin supplementations and the intermediary metabolism of crustaceans are still poorly elucidated. This study explored the effects of different dietary niacin levels on the growth, feed utilization, energy sensing, and glycolipid metabolism of oriental river prawn Macrobrachium nipponense. Prawns were fed with different experimental diets containing graded niacin levels (15.75, 37.62, 56.62, 97.78, 176.32, and 339.28 mg/kg, respectively) for 8 weeks. Weight gain, protein efficiency, feed intake, and hepatopancreas niacin contents all maximized in the 176.32 mg/kg group with significance noted with the control group (P <0.05), whereas the opposite was true for feed conversion ratio. Hepatopancreas niacin concentrations increased significantly (P < 0.05) as dietary niacin levels increased, and peaked at the 339.28 mg/kg group. Hemolymph glucose, total cholesterol, and triglyceride concentrations all maximized in the 37.62 mg/kg group, while total protein concentration reached the highest value in the 176.32 mg/kg group. The hepatopancreas mRNA expression of AMP-activated protein kinase α and sirtuin 1 peaked at the 97.78 and 56.62 mg/kg group, respectively, and then both decreased as dietary niacin levels increased furtherly (P < 0.05). Hepatopancreas transcriptions of the genes related to glucose transportation, glycolysis, glycogenesis, and lipogenesis all increased with increasing niacin levels up to 176.32 mg/kg, but decreased significantly (P < 0.05) as dietary niacin levels increased furtherly. However, the transcriptions of the genes related to gluconeogenesis and fatty acid ß-oxidation all decreased significantly (P < 0.05) as dietary niacin levels increased. Collectively, the optimum dietary niacin demand of oriental river prawn is 168.01-169.08 mg/kg. In addition, appropriate doses of niacin promoted the energy-sensing capability and glycolipid metabolism of this species.

5.
Kidney Int ; 100(6): 1250-1267, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34634362

RESUMEN

Loss of fatty acid ß-oxidation (FAO) in the proximal tubule is a critical mediator of acute kidney injury and eventual fibrosis. However, transcriptional mediators of FAO in proximal tubule injury remain understudied. Krüppel-like factor 15 (KLF15), a highly enriched zinc-finger transcription factor in the proximal tubule, was significantly reduced in proximal tubule cells after aristolochic acid I (AAI) treatment, a proximal tubule-specific injury model. Proximal tubule specific knockout of Klf15 exacerbated proximal tubule injury and kidney function decline compared to control mice during the active phase of AAI treatment, and after ischemia-reperfusion injury. Furthermore, along with worsening proximal tubule injury and kidney function decline, knockout mice exhibited increased kidney fibrosis as compared to control mice during the remodeling phase after AAI treatment. RNA-sequencing of kidney cortex demonstrated increased transcripts involved in immune system and integrin signaling pathways and decreased transcripts encompassing metabolic pathways, specifically FAO, and PPARα signaling, in knockout versus control mice after AAI treatment. In silico and experimental chromatin immunoprecipitation studies collectively demonstrated that KLF15 occupied the promoter region of key FAO genes, CPT1A and ACAA2, in close proximity to transcription factor PPARα binding sites. While the loss of Klf15 reduced the expression of Cpt1a and Acaa2 and led to compromised FAO, induction of KLF15 partially rescued loss of FAO in AAI-treated cells. Klf15, Ppara, Cpt1a, and Acaa2 expression was also decreased in other mouse kidney injury models. Tubulointerstitial KLF15 independently correlated with eGFR, PPARA and CPT1A appearance in expression arrays from human kidney biopsies. Thus, proximal tubule-specific loss of Klf15 exacerbates acute kidney injury and fibrosis, likely due to loss of interaction with PPARα leading to loss of FAO gene transcription.


Asunto(s)
Lesión Renal Aguda , Ácidos Grasos/metabolismo , Factores de Transcripción de Tipo Kruppel , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/genética , Animales , Riñón , Túbulos Renales Proximales , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Noqueados
6.
Biochem Biophys Res Commun ; 551: 7-13, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33713981

RESUMEN

Both the Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) antioxidant pathway and Nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) pathway are considered essential for the development of acute lung injury (ALI)/ARDS induced by sepsis. Our aim was to study the role of Nrf2/HO-1 pathway on activation of the NLRP3 in the protective effect of marrow mesenchymal stem cells (BMSCs) on LPS-induced ALI. We found that BMSCs ameliorated ALI as evidenced by 1) decreased histopathological injury, wet/dry ratio, and protein permeability index in lung; 2) decreased reactive oxygen species (ROS), malondialdehyde (MDA), and protein carbonyl content and restored the activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) in lung tissue; 3) reduced LPS-induced increase in inflammatory cell count and promotion of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 levels in bronchoalveolar lavage fluid (BALF); 4) improvement in the four-day survival rate of animals; and 5) enhanced expression of Nrf2 and HO-1 and decreased expression of NOD-like receptor protein 3(NLRP3) and caspase-1 (p20) in lung tissue. Of note, Nrf2 transcription factor inhibitor brusatol and HO-1 inhibitor tin protoporphyrin IX (SnppIX) reversed BMSCs induced down-expression of NLRP3 and caspase-1 (p20), and inhibited the protective effects of BMSCs. These findings demonstrated that the Nrf2-mediated HO-1 signaling pathway plays a critical role in the protective effects of BMSCs on LPS-induced ALI. BMSCs may play an anti-inflammatory effect partly through the Nrf2/HO-1-dependent NLRP3 pathway.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/prevención & control , Células de la Médula Ósea/citología , Endotoxinas/efectos adversos , Hemo Oxigenasa (Desciclizante)/metabolismo , Células Madre Mesenquimatosas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Animales , Antioxidantes/metabolismo , Permeabilidad Capilar/efectos de los fármacos , Regulación de la Expresión Génica , Hemo Oxigenasa (Desciclizante)/antagonistas & inhibidores , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Pulmón/irrigación sanguínea , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Masculino , Células Madre Mesenquimatosas/citología , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Tasa de Supervivencia
7.
J Oral Pathol Med ; 49(5): 417-426, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31823403

RESUMEN

BACKGROUND: Despite their high accuracy to recognize oral potentially malignant disorders (OPMDs) with cancer risk, non-invasive oral assays are poor in discerning whether the risk is high or low. However, it is critical to identify the risk levels, since high-risk patients need active intervention, while low-risk ones simply need to be follow-up. This study aimed at developing a personalized computational model to predict cancer risk level of OPMDs and explore its potential web application in OPMDs screening. METHODS: Each enrolled patient was subjected to the following procedure: personal information collection, non-invasive oral examination, oral tissue biopsy and histopathological analysis, treatment, and follow-up. Patients were randomly divided into a training set (N = 159) and a test set (N = 107). Random forest was used to establish classification models. A baseline model (model-B) and a personalized model (model-P) were created. The former used the non-invasive scores only, while the latter was incremented with appropriate personal features. RESULTS: We compared the respective performance of cancer risk level prediction by model-B, model-P, and clinical experts. Our data suggested that all three have a similar level of specificity around 90%. In contrast, the sensitivity of model-P is beyond 80% and superior to the other two. The improvement of sensitivity by model-P reduced the misclassification of high-risk patients as low-risk ones. We deployed model-P in web.opmd-risk.com, which can be freely and conveniently accessed. CONCLUSION: We have proposed a novel machine-learning model for precise and cost-effective OPMDs screening, which integrates clinical examinations, machine learning, and information technology.


Asunto(s)
Simulación por Computador , Aprendizaje Automático , Neoplasias de la Boca/diagnóstico , Lesiones Precancerosas/diagnóstico , Medición de Riesgo/métodos , Detección Precoz del Cáncer , Humanos , Internet , Programas Informáticos
8.
Clin Lab ; 65(3)2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30868851

RESUMEN

BACKGROUND: Long non-coding RNA (lncRNA) urothelial carcinoma-associated 1 (UCA1) has been predicted to play a critical role in various biological processes including tumorigenesis. However, the clinical significance of UCA1 in lung adenocarcinoma (LUAD) is still not understood in detail. The aim of this study was to assess the clinical significance of the UCA1 expression levels in LUAD based on publicly available data and to evaluate its potential signaling pathways. METHODS: The RNA-sequencing (RNA-seq) dataset and clinical information of all LUAD patients were downloaded from The Cancer Genome Atlas (TCGA). Kaplan-Meier plot and log-rank test were performed for survival analysis; Cox proportional hazards regression model were used to assess the relative factors. Furthermore, Starbase, Cbioportal, and Multi Experiment Matrix starbases were used to identify UCA1-related genes in LUAD. Finally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of UCA1-related genes were performed using DAVID. RESULTS: The expression level of UCA1 in LUAD tissues (n = 468) was significantly increased compared with the adjacent non-tumor lung tissues (n = 52) (p < 0.0001). In addition, UCA1 level was significantly correlated with TNM stage and lymph node metastasis. Survival analysis showed that UCA1 over-expression was significantly associated with poor overall survival (OS) (p = 0.0098) and poor recurrence-free survival (RFS) (p = 0.0298) in LUAD patients. Multivariate analysis confirmed that high expression of lncRNA-UCA1 was an independent prognostic factor of poor OS (HR = 1.353, 95% CI: 1.005 - 1.822, p = 0.046). Finally, KEGG analysis for UCA1-related genes indicated that UCA1 might be enriched with the microRNAs in cancer, pathways in cancer, endocytosis, focal adhesion, and proteoglycans in cancer. CONCLUSIONS: This study showed that UCA1 may be involved in lung carcinogenesis, which could act as a biomarker of prognosis and therapeutic target in LUAD patients.


Asunto(s)
Adenocarcinoma/metabolismo , Neoplasias Pulmonares/metabolismo , ARN Largo no Codificante/metabolismo , Adenocarcinoma/mortalidad , Adenocarcinoma/patología , China/epidemiología , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Pulmón/patología , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad
9.
J Am Soc Nephrol ; 29(10): 2529-2545, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30143559

RESUMEN

BACKGROUND: Podocyte injury is the hallmark of proteinuric kidney diseases, such as FSGS and minimal change disease, and destabilization of the podocyte's actin cytoskeleton contributes to podocyte dysfunction in many of these conditions. Although agents, such as glucocorticoids and cyclosporin, stabilize the actin cytoskeleton, systemic toxicity hinders chronic use. We previously showed that loss of the kidney-enriched zinc finger transcription factor Krüppel-like factor 15 (KLF15) increases susceptibility to proteinuric kidney disease and attenuates the salutary effects of retinoic acid and glucocorticoids in the podocyte. METHODS: We induced podocyte-specific KLF15 in two proteinuric murine models, HIV-1 transgenic (Tg26) mice and adriamycin (ADR)-induced nephropathy, and used RNA sequencing of isolated glomeruli and subsequent enrichment analysis to investigate pathways mediated by podocyte-specific KLF15 in Tg26 mice. We also explored in cultured human podocytes the potential mediating role of Wilms Tumor 1 (WT1), a transcription factor critical for podocyte differentiation. RESULTS: In Tg26 mice, inducing podocyte-specific KLF15 attenuated podocyte injury, glomerulosclerosis, tubulointerstitial fibrosis, and inflammation, while improving renal function and overall survival; it also attenuated podocyte injury in ADR-treated mice. Enrichment analysis of RNA sequencing from the Tg26 mouse model shows that KLF15 induction activates pathways involved in stabilization of actin cytoskeleton, focal adhesion, and podocyte differentiation. Transcription factor enrichment analysis, with further experimental validation, suggests that KLF15 activity is in part mediated by WT1. CONCLUSIONS: Inducing podocyte-specific KLF15 attenuates kidney injury by directly and indirectly upregulating genes critical for podocyte differentiation, suggesting that KLF15 induction might be a potential strategy for treating proteinuric kidney disease.


Asunto(s)
Proteínas de Unión al ADN/biosíntesis , Enfermedades Renales/metabolismo , Podocitos/metabolismo , Proteinuria/metabolismo , Factores de Transcripción/biosíntesis , Citoesqueleto de Actina/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Adhesiones Focales , Técnicas de Silenciamiento del Gen , Glomeruloesclerosis Focal y Segmentaria/genética , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Humanos , Enfermedades Renales/genética , Enfermedades Renales/patología , Factores de Transcripción de Tipo Kruppel/antagonistas & inhibidores , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Ratones Transgénicos , Nefrosis Lipoidea/genética , Nefrosis Lipoidea/metabolismo , Nefrosis Lipoidea/patología , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Podocitos/patología , Proteinuria/genética , Proteinuria/patología , Factores de Transcripción/genética , Regulación hacia Arriba , Proteínas WT1/antagonistas & inhibidores , Proteínas WT1/genética , Proteínas WT1/metabolismo
10.
J Am Soc Nephrol ; 28(1): 166-184, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27288011

RESUMEN

Podocyte injury is the inciting event in primary glomerulopathies, such as minimal change disease and primary FSGS, and glucocorticoids remain the initial and often, the primary treatment of choice for these glomerulopathies. Because inflammation is not readily apparent in these diseases, understanding the direct effects of glucocorticoids on the podocyte, independent of the immunomodulatory effects, may lead to the identification of targets downstream of glucocorticoids that minimize toxicity without compromising efficacy. Several studies showed that treatment with glucocorticoids restores podocyte differentiation markers and normal ultrastructure and improves cell survival in murine podocytes. We previously determined that Krüppel-like factor 15 (KLF15), a kidney-enriched zinc finger transcription factor, is required for restoring podocyte differentiation markers in mice and human podocytes under cell stress. Here, we show that in vitro treatment with dexamethasone induced a rapid increase of KLF15 expression in human and murine podocytes and enhanced the affinity of glucocorticoid receptor binding to the promoter region of KLF15 In three independent proteinuric murine models, podocyte-specific loss of Klf15 abrogated dexamethasone-induced podocyte recovery. Furthermore, knockdown of KLF15 reduced cell survival and destabilized the actin cytoskeleton in differentiated human podocytes. Conversely, overexpression of KLF15 stabilized the actin cytoskeleton under cell stress in human podocytes. Finally, the level of KLF15 expression in the podocytes and glomeruli from human biopsy specimens correlated with glucocorticoid responsiveness in 35 patients with minimal change disease or primary FSGS. Thus, these studies identify the critical role of KLF15 in mediating the salutary effects of glucocorticoids in the podocyte.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Proteínas de Unión al ADN/fisiología , Glucocorticoides/farmacología , Podocitos/citología , Podocitos/efectos de los fármacos , Factores de Transcripción/fisiología , Adolescente , Adulto , Animales , Antígenos de Diferenciación/efectos de los fármacos , Niño , Dexametasona/farmacología , Femenino , Glomeruloesclerosis Focal y Segmentaria/inmunología , Humanos , Factores de Transcripción de Tipo Kruppel , Masculino , Ratones , Persona de Mediana Edad , Nefrosis Lipoidea/inmunología , Adulto Joven
11.
Kidney Int ; 92(5): 1178-1193, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28651950

RESUMEN

Large epidemiological studies clearly demonstrate that multiple episodes of acute kidney injury contribute to the development and progression of kidney fibrosis. Although our understanding of kidney fibrosis has improved in the past two decades, we have limited therapeutic strategies to halt its progression. Myofibroblast differentiation and proliferation remain critical to the progression of kidney fibrosis. Although canonical Wnt signaling can trigger the activation of myofibroblasts in the kidney, mediators of Wnt inhibition in the resident progenitor cells are unclear. Recent studies demonstrate that the loss of a Krüppel-like factor 15 (KLF15), a kidney-enriched zinc-finger transcription factor, exacerbates kidney fibrosis in murine models. Here, we tested whether Klf15 mRNA and protein expression are reduced in late stages of fibrosis in mice that underwent unilateral ureteric obstruction, a model of progressive renal fibrosis. Knockdown of Klf15 in Foxd1-expressing cells (Foxd1-Cre Klf15fl/fl) increased extracellular matrix deposition and myofibroblast proliferation as compared to wildtype (Foxd1-Cre Klf15+/+) mice after three and seven days of ureteral obstruction. This was validated in mice receiving angiotensin II treatment for six weeks. In both these murine models, the increase in renal fibrosis was found in Foxd1-Cre Klf15fl/fl mice and accompanied by the activation of Wnt/ß-catenin signaling. Furthermore, knockdown of Klf15 in cultured mouse embryonic fibroblasts activated canonical Wnt/ß-catenin signaling, increased profibrotic transcripts, and increased proliferation after treatment with a Wnt1 ligand. Conversely, the overexpression of KLF15 inhibited phospho-ß-catenin (Ser552) expression in Wnt1-treated cells. Thus, KLF15 has a critical role in attenuating kidney fibrosis by inhibiting the canonical Wnt/ß-catenin pathway.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Factores de Transcripción Forkhead/metabolismo , Enfermedades Renales/patología , Riñón/patología , Miofibroblastos/patología , Factores de Transcripción/metabolismo , Vía de Señalización Wnt , Angiotensina II/toxicidad , Animales , Proliferación Celular , Células Cultivadas , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Fibrosis , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Riñón/citología , Enfermedades Renales/etiología , Factores de Transcripción de Tipo Kruppel , Masculino , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/metabolismo , Fosforilación , ARN Mensajero/metabolismo , Células del Estroma/metabolismo , Células del Estroma/patología , Factores de Transcripción/genética , Proteína Wnt1/metabolismo , beta Catenina/metabolismo
12.
Am J Nephrol ; 46(1): 55-63, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28618409

RESUMEN

BACKGROUND: Few genetic studies have focused on unilateral renal agenesis (URA), which is a disorder with insidious clinical manifestations and a tendency to result in renal failure. We aimed to detect pathogenic mutations in nephrogenesis-related genes, which were identified by a literature review conducted among a large cohort of Chinese Han patients with URA. METHODS: Totally, 86 unrelated URA patients were included. All URA patients were diagnosed by employing radiological methods. Patients with a solitary kidney owing to nephrectomy or renal atrophy due to secondary factors were excluded. Nine (10.5%) patients had a family history of abnormal nephrogenesis. Fifteen (17.4%) had other malformations in the urogenital system. All coding exons and adjacent intron regions of 25 genes were analyzed using next-generation sequencing and validated by Sanger sequencing and 100 ethnically matched healthy controls. RESULTS: Ten conserved mutations (9 missense mutations and 1 deletion mutation) were identified in SALL1, EYA1, RET, HNF1B, DSTYK, WNT4, and SIX5. All mutations were novel or rare (frequency <0.1%) in the public databases and absent from the 100 healthy controls. Nine patients carried mutations in candidate genes. Most of the patients carried one single heterozygous mutation, except for 2, who respectively carried compound heterozygous mutations and 2 single heterozygous mutations. In addition, 2 patients shared the same mutation in DSTYK. CONCLUSION: A total of 10.5% of our URA cases could be explained by mutations in our candidate genes. The mutations in nephrogenesis-related genes in the Chinese Han patients with URA had a decentralized distribution without any hotspot mutations.


Asunto(s)
Pueblo Asiatico/genética , Predisposición Genética a la Enfermedad , Riñón/embriología , Riñón Único/genética , Adolescente , Adulto , Anciano , Niño , Estudios de Cohortes , Exones/genética , Femenino , Factor Nuclear 1-beta del Hepatocito/genética , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Homeodominio/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Intrones/genética , Masculino , Persona de Mediana Edad , Mutación Missense , Proteínas Nucleares/genética , Fenotipo , Proteínas Tirosina Fosfatasas/genética , Proteínas Proto-Oncogénicas c-ret/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Eliminación de Secuencia , Factores de Transcripción/genética , Proteína Wnt4/genética , Adulto Joven
14.
PLoS Genet ; 9(10): e1003850, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24098152

RESUMEN

A subset of transcription factors like Gli2 and Oct1 are bipotential--they can activate or repress the same target, in response to changing signals from upstream genes. Some previous studies implied that the sex-determination protein TRA-1 might also be bipotential; here we confirm this hypothesis by identifying a co-factor, and use it to explore how the structure of a bipotential switch changes during evolution. First, null mutants reveal that C. briggsae TRR-1 is required for spermatogenesis, RNA interference implies that it works as part of the Tip60 Histone Acetyl Transferase complex, and RT-PCR data show that it promotes the expression of Cbr-fog-3, a gene needed for spermatogenesis. Second, epistasis tests reveal that TRR-1 works through TRA-1, both to activate Cbr-fog-3 and to control the sperm/oocyte decision. Since previous studies showed that TRA-1 can repress fog-3 as well, these observations demonstrate that it is bipotential. Third, TRR-1 also regulates the development of the male tail. Since Cbr-tra-2 Cbr-trr-1 double mutants resemble Cbr-tra-1 null mutants, these two regulatory branches control all tra-1 activity. Fourth, striking differences in the relationship between these two branches of the switch have arisen during recent evolution. C. briggsae trr-1 null mutants prevent hermaphrodite spermatogenesis, but not Cbr-fem null mutants, which disrupt the other half of the switch. On the other hand, C. elegans fem null mutants prevent spermatogenesis, but not Cel-trr-1 mutants. However, synthetic interactions confirm that both halves of the switch exist in each species. Thus, the relationship between the two halves of a bipotential switch can shift rapidly during evolution, so that the same phenotype is produce by alternative, complementary mechanisms.


Asunto(s)
Evolución Biológica , Trastornos del Desarrollo Sexual/genética , Oocitos/crecimiento & desarrollo , Procesos de Determinación del Sexo/genética , Espermatozoides/crecimiento & desarrollo , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Humanos , Masculino , Oogénesis/genética , Procesos de Determinación del Sexo/fisiología , Espermatogénesis/genética
15.
Comput Biol Med ; 170: 107896, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38217972

RESUMEN

BACKGROUND: Abnormal expression of collagen IV subunits has been reported in cancers, but the significance is not clear. No study has reported the significance of COL4A4 in lung adenocarcinoma (LUAD). METHODS: COL4A4 expression data, single-cell sequencing data and clinical data were downloaded from public databases. A range of bioinformatics and experimental methods were adopted to analyze the association of COL4A4 expression with clinical parameters, tumor microenvironment (TME), drug resistance and immunotherapy response, and to investigate the roles and underlying mechanism of COL4A4 in LUAD. RESULTS: COL4A4 is differentially expressed in most of cancers analyzed, being associated with prognosis, tumor stemness, immune checkpoint gene expression and TME parameters. In LUAD, COL4A4 expression is down-regulated and associated with various TME parameters, response to immunotherapy and drug resistance. LUAD patients with lower COL4A4 have worse prognosis. Knockdown of COL4A4 significantly inhibited the expression of cell-cycle associated genes, and the expression and activation of signaling pathways including JAK/STAT3, p38, and ERK pathways, and induced quiescence in LUAD cells. Besides, it significantly induced the expression of a range of bioactive molecule genes that have been shown to have critical roles in TME remodeling and immune regulation. CONCLUSIONS: COL4A4 is implicated in the pathogenesis of cancers including LUAD. Its function may be multifaceted. It can modulate the activity of LUAD cells, TME remodeling and tumor stemness, thus affecting the pathological process of LUAD. COL4A4 may be a prognostic molecular marker and a potential therapeutic target.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/genética , Biología Computacional , Bases de Datos Factuales , Inmunoterapia , Neoplasias Pulmonares/genética , Microambiente Tumoral/genética , Colágeno Tipo IV/genética
16.
Ther Clin Risk Manag ; 20: 413-426, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39045135

RESUMEN

Background: The positive roles of deep muscle relaxation in abdominal surgeries and transversus abdominis plane block (TAPB) in the postoperative analgesia. This study aimed to discuss the effects of TAPB on abdominal muscle relaxation, the intraoperative diaphragmatic, and the respiratory functions. Methods: The patients were randomly divided into the TAPB group who received single-shot TAPB bilaterally (n=30), and the control group who did not receive TAPB (n=30). Both groups keep the same steps for other procedures in the surgeries and anesthesia. Four time points for monitoring were defined: The moment when pneumoperitoneum pressure stabilized following endotracheal intubation and anesthetic induction (T0), appearance of the first incisure in the pressure-volume (P-V) loop (T1), appearance of the second incisure in the P-V loop (T2), and the moment with single stimulation (SS) =20% (T3). Primary observation parameters were SS1 measured by muscle relaxation monitoring at T1, and SS2 at T2. Secondary observation parameters included surgeon's satisfaction with surgical field and respiratory dynamics at the four time points. Results: The two groups were comparable in age, gender, BMI, ASA grade, and operation time. The TAPB group had a dramatic reduction in the total dose of intraoperative sufentanil (0.73±0.21 ug/kg) compared with the control group (0.87±0.18 ug/kg) (P=0.023); Other use of drug did not differ between the two groups. The two groups did not differ significantly in SS at either T1 (SS1) or T2 (SS2). In either group, surgeon's satisfaction with surgical field at T1 and T2 decreased dramatically compared with T0 and T3 (all P<0.05). At each time point, the respiratory dynamics and the surgeon's satisfaction with surgical field did not differ significantly between the two groups. Conclusion: TAPB reduced the use of intraoperative analgesics without altering the degree of abdominal relaxation, or affecting surgeon's satisfaction with surgical field in the patients receiving laparoscopic colorectal surgery.

17.
Biosensors (Basel) ; 14(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38920580

RESUMEN

Metal-organic frameworks (MOFs) are frequently utilized as sensing materials. Unfortunately, the low conductivity of MOFs hinder their further application in electrochemical determination. To overcome this limitation, a novel modification strategy for MOFs was proposed, establishing an electrochemical determination method for cyanides in Baijiu. Co and Ni were synergistically used as the metal active centers, with meso-Tetra(4-carboxyphenyl)porphine (TCPP) and Ferrocenecarboxylic acid (Fc-COOH) serving as the main ligands, synthesizing Ni/Co-MOF-TCPP-Fc through a hydrothermal method. The prepared MOF exhibited improved conductivity and stable ratio signals, enabling rapid and sensitive determination of cyanides. The screen-printed carbon electrodes (SPCE) were suitable for in situ and real-time determination of cyanide by electrochemical sensors due to their portability, low cost, and ease of mass production. A logarithmic linear response in the range of 0.196~44 ng/mL was demonstrated by this method, and the limit of detection (LOD) was 0.052 ng/mL. Compared with other methods, the sensor was constructed by a one-step synthesis method, which greatly simplifies the analysis process, and the determination time required was only 4 min. During natural cyanide determinations, recommended readouts match well with GC-MS with less than 5.9% relative error. Moreover, this electrochemical sensor presented a promising method for assessing the safety of cyanides in Baijiu.


Asunto(s)
Cianuros , Técnicas Electroquímicas , Límite de Detección , Estructuras Metalorgánicas , Cianuros/análisis , Estructuras Metalorgánicas/química , Electrodos , Técnicas Biosensibles , Níquel/química , Compuestos Ferrosos/química , Metalocenos/química , Cobalto/química
18.
Food Chem ; 453: 139626, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-38759440

RESUMEN

Ethyl carbamate (EC) is a carcinogen widely found in the fermentation process of Baijiu. Herein, we construct a molecularly imprinted polymers/MXene/cobalt (II) based zeolitic imidazolate frameworks (MIP/MXene/ZIF-67) nano-enzyme sensor for the detection of EC during Baijiu production. The ZIF-67 is synthesized in situ on the MXene nanosheets to provide a superior catalytic activity to H2O2 and amplify the electrochemical signal. The MIP is prepared by the polymerization reaction to recognize EC. Owing to the interaction between EC and EC-MIP, the interferences are effectively eliminated, greatly improving the accuracy of the expected outcome. This approach attains an ultrasensitive assay of EC ranging from 8.9 µg/L to 44.5 mg/L with detection limit of 0.405 µg/L. The accuracy of this method is confirmed by the recovery experiment with good recoveries from 95.07% to 107.41%. This method is applied in natural EC analyses, and the results are consistent with certified gas chromatograph- mass spectrometer.


Asunto(s)
Técnicas Electroquímicas , Contaminación de Alimentos , Impresión Molecular , Uretano , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Uretano/análisis , Uretano/química , Contaminación de Alimentos/análisis , Catálisis , Polímeros Impresos Molecularmente/química , Límite de Detección
19.
Biomed Pharmacother ; 172: 116320, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38387134

RESUMEN

BACKGROUND: Mitochondrial redox imbalance underlies the pathophysiology of type2 diabetes mellitus (T2DM), and is closely related to tissue damage and dysfunction. Studies have shown the beneficial effects of dietary strategies that elevate ß-hydroxybutyrate (BHB) levels in alleviating T2DM. Nevertheless, the role of BHB has not been clearly elucidated. METHODS: We performed a spectral study to visualize the preventive effects of BHB on blood and multiorgan mitochondrial redox imbalance in T2DM mice via using label-free resonance Raman spectroscopy (RRS), and further explored the impact of BHB therapy on the pathology of T2DM mice by histological and biochemical analyses. FINDINGS: Our data revealed that RRS-based mitochondrial redox states assay enabled clear and reliable identification of the improvement of mitochondrial redox imbalance by BHB, evidenced by the reduction of Raman peak intensity at 750 cm-1, 1128 cm-1 and 1585 cm-1 in blood, tissue as well as purified mitochondria of db/db mice and the increase of tissue mitochondrial succinic dehydrogenase (SDH) staining after BHB treatment. Exogenous supplementation of BHB was also found to attenuate T2DM pathology related to mitochondrial redox states, involving organ injury, blood glucose control, insulin resistance and systemic inflammation. INTERPRETATION: Our findings provide strong evidence for BHB as a potential therapeutic strategy targeting mitochondria for T2DM.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratones , Animales , Espectrometría Raman , Ácido 3-Hidroxibutírico/farmacología , Mitocondrias , Oxidación-Reducción , Diabetes Mellitus Tipo 2/tratamiento farmacológico
20.
Mol Neurobiol ; 61(3): 1346-1362, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37704928

RESUMEN

Sorting nexin17 (SNX17) is a member of the sorting nexin family, which plays a crucial role in endosomal trafficking. Previous research has shown that SNX17 is involved in the recycling or degradation of various proteins associated with neurodevelopmental and neurological diseases in cell models. However, the significance of SNX17 in neurological function in the mouse brain has not been thoroughly investigated. In this study, we generated Snx17 knockout mice and observed that the homozygous deletion of Snx17 (Snx17-/-) resulted in lethality. On the other hand, heterozygous mutant mice (Snx17+/-) exhibited anxiety-like behavior with a reduced preference for social novelty. Furthermore, Snx17 haploinsufficiency led to impaired synaptic transmission and reduced maturation of dendritic spines. Through GST pulldown and interactome analysis, we identified the SRC kinase inhibitor, p140Cap, as a potential downstream target of SNX17. We also demonstrated that the interaction between p140Cap and SNX17 is crucial for dendritic spine maturation. Together, this study provides the first in vivo evidence highlighting the important role of SNX17 in maintaining neuronal function, as well as regulating social novelty and anxiety-like behaviors.


Asunto(s)
Espinas Dendríticas , Nexinas de Clasificación , Animales , Ratones , Espinas Dendríticas/metabolismo , Homocigoto , Transporte de Proteínas , Eliminación de Secuencia , Nexinas de Clasificación/genética , Nexinas de Clasificación/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA