Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 29(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38542909

RESUMEN

N-glycolylneuraminic acid (Neu5Gc), a sialic acid predominantly found in the non-neurohumoral fluids of hind-mouthed animals, is incapable of synthesizing Neu5Gc due to a deletion in the CMAH exon of the gene encoding human CMP-Neu5Gc hydroxylase. But consumption of animal-derived foods that contain Neu5Gc, such as red meat, can instigate an immune response in humans, as Neu5Gc is recognized as a foreign substance by the human immune system. This recognition leads to the production of anti-Neu5Gc antibodies, subsequently resulting in chronic inflammation. When Neu5Gc is consumed excessively or frequently, it may contribute to the development of heart disease and cancer. This makes Neu5Gc, an endogenous pathogenic factor derived from red meat, a new hot topic in red meat safety research. In this study, aptamers obtained by the magnetic bead SELEX technique were subjected to homology and secondary structure prediction analysis as well as affinity determination. The result indicated that the aptamer 2B.N2A9 exhibited a robust binding affinity, with an affinity constant (Ka) of 1.87 × 108 L/mol. This aptamer demonstrated optimal binding specificity within a pH range of 5.4 to 7.4. Molecular docking analysis further revealed that aptamer 2B.N2A9 formed stable binding interactions with the target Neu5Gc at specific sites, namely G-14, C-15, G-13, G-58, G-60, and C-59. An Enzyme-Linked Oligonucleotide Sorbent Assay (ELOSA) methodology was established to detect the endogenous pathogenic factor Neu5Gc present in red meat. This method demonstrated a limit of detection (LOD) of 0.71 ng/mL, along with an average recovery rate of 92.23%. The aptamer obtained in this study exhibited favorable binding properties to Neu5Gc. The assay was relatively convenient and demonstrated good sensitivity. Further investigation into the distribution of Neu5Gc in various red meats is of public health significance and scientific potential. A practical detection method should be provided to guide red meat diets and ensure the nutrition and safety of meat products.


Asunto(s)
Ácido N-Acetilneuramínico , Carne Roja , Animales , Humanos , Simulación del Acoplamiento Molecular , Inflamación , Oligonucleótidos
2.
J Agric Food Chem ; 72(13): 6850-6870, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38513114

RESUMEN

Siraitia grosvenorii (SG), also known as Luo Han Guo or Monk fruit, boasts a significant history in food and medicine. This review delves into SG's historical role and varied applications in traditional Chinese culture, examining its phytochemical composition and the health benefits of its bioactive compounds. It further explores SG's biological activities, including antioxidant, anti-inflammatory, and antidiabetic properties and elucidates the mechanisms behind these effects. The review also highlights recent synthetic biology advances in enhancing the production of SG's bioactive compounds, presenting new opportunities for broadening their availability. Ultimately, this review emphasizes SG's value in food and medicine, showcasing its historical and cultural importance, phytochemistry, biological functions, action mechanisms, and the role of synthetic biology in its sustainable use.


Asunto(s)
Cucurbitaceae , Biología Sintética , Frutas/química , Cucurbitaceae/química
3.
Carbohydr Polym ; 333: 121908, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38494200

RESUMEN

Human milk oligosaccharides (HMOs) are intricate glycans that promote healthy growth of infants and have been incorporated into infant formula as food additives. Despite their importance, the limited availability of asymmetrically branched HMOs hinders the exploration of their structure and function relationships. Herein, we report an enzymatic modular strategy for the efficient synthesis of these HMOs. The key branching enzyme for the assembly of branched HMOs, human ß1,6-N-acetylglucosaminyltransferase 2 (GCNT2), was successfully expressed in Pichia pastoris for the first time. Then, it was integrated with six other bacterial glycosyltransferases to establish seven glycosylation modules. Each module comprises a one-pot multi-enzyme (OPME) system for in-situ generation of costly sugar nucleotide donors, combined with a glycosyltransferase for specific glycosylation. This approach enabled the synthesis of 31 branched HMOs and 13 linear HMOs in a stepwise manner with well-programmed synthetic routes. The binding details of these HMOs with related glycan-binding proteins were subsequently elucidated using glycan microarray assays to provide insights into their biological functions. This comprehensive collection of synthetic HMOs not only serves as standards for HMOs structure identification in complex biological samples but also significantly enhances the fields of HMOs glycomics, opening new avenues for biomedical applications.


Asunto(s)
Leche Humana , Oligosacáridos , Humanos , Leche Humana/química , Oligosacáridos/química , Glicosiltransferasas/química , Glicosilación , Polisacáridos/metabolismo
4.
Int J Biol Macromol ; 262(Pt 1): 129856, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38423908

RESUMEN

In this study, a novel polysaccharide, AAP-2S, was extracted from Auricularia auricula, and the anti-glycosylation effect of AAP-2S and its underlying mechanisms were investigated using an in vitro BSA-fructose model and a cellular model. The results demonstrated the inhibiting formation of advanced glycation end products (AGEs) in vitro by AAP-2S. Concurrently, it attenuated oxidative damage to proteins in the model, preserved protein sulfhydryl groups from oxidation, reduced protein carbonylation, prevented structural alterations in proteins, and decreased the formation of ß-crosslinked structures. Furthermore, AAP-2S demonstrated metal-chelating capabilities. GC-MS/MS-based metabolomics were employed to analyze changes in metabolic profiles induced by AAP-2S in a CML-induced HK-2 cell model. Mechanistic investigations revealed that AAP-2S could mitigate glycosylation and ameliorate cell fibrosis by modulating the RAGE/TGF-ß/NOX4 pathway. This study provides a foundational framework for further exploration of Auricularia auricular polysaccharide as a natural anti-AGEs agent, paving the way for its potential development and application as a food additive.


Asunto(s)
Auricularia , Reacción de Maillard , Auricularia/metabolismo , Espectrometría de Masas en Tándem , Polisacáridos/farmacología , Proteínas , Productos Finales de Glicación Avanzada/metabolismo
5.
Phytomedicine ; 130: 155546, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38833790

RESUMEN

BACKGROUND: Diabetes mellitus (DM) is a chronic metabolic disease characterized by hyperglycemia, and its increasing prevalence is a global concern. Early diagnostic markers and therapeutic targets are essential for DM prevention and treatment. Pueraria, derived from kudzu root, is used clinically for various symptoms, and its active compound, Puerarin, shows promise in improving insulin resistance and reducing inflammation. PURPOSE: This study aims to evaluate the protective effects of metformin and Puerarin at different doses in an STZ-induced DM mouse model. The intricate metabolites within the serum of STZ-induced diabetic mice were subjected to thorough investigation, thus elucidating the intricate mechanism through which Puerarin demonstrates notable efficacy in the treatment of diabetes. METHODS: An STZ-induced DM mouse model is established. Mice are treated with metformin and puerarin at varying doses. Physiological, biochemical, and histomorphological assessments are performed. Metabolomics analysis is carried out on serum samples from control, DM, metformin, and medium-dose Puerarin groups. Western blot and qRT-PCR technologies are used to validate the mechanisms. RESULTS: The DM mouse model replicates abnormal blood glucose, insulin levels, physiological, biochemical irregularities, as well as liver and pancreas damage. Treatment with metformin and Puerarin restores these abnormalities, reduces organ injury, and modulates AMPK, PPARγ, mTOR, and NF-κB protein and mRNA expression. Puerarin activates the AMPK-mTOR and PPARγ-NF-κB signaling pathways, regulating insulin signaling, glucolipid metabolism, and mitigating inflammatory damage. CONCLUSION: This study demonstrates that Puerarin has the potential to treat diabetes by modulating key signaling pathways. The focus was on the finding that Puerarin has been shown to improve insulin signaling, glucolipid metabolism and attenuate inflammatory damage through the modulation of the AMPK-mTOR and PPARγ-NF-κB pathways. The discovery of Puerarin's favorable protective effect and extremely complex mechanism highlights its prospect in the treatment of diabetes and provides theoretical support for its comprehensive development and utilization.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Glucemia , Diabetes Mellitus Experimental , Hipoglucemiantes , Isoflavonas , Metformina , FN-kappa B , PPAR gamma , Pueraria , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Isoflavonas/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/farmacología , FN-kappa B/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Transducción de Señal/efectos de los fármacos , Masculino , Metformina/farmacología , PPAR gamma/metabolismo , Pueraria/química , Ratones , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Metabolómica , Insulina/sangre , Insulina/metabolismo
6.
J Ethnopharmacol ; 323: 117608, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38158098

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Xianglianhuazhuo formula (XLHZ) has a potential therapeutic effect on chronic atrophic gastritis (CAG). However, the specific molecular mechanism remains unclear. AIM OF THE STUDY: To evaluate the effect of XLHZ on CAG in vitro and in vivo and its potential mechanisms. METHODS: A rat model of CAG was established using a composite modeling method, and the pathological changes and ultrastructure of gastric mucosa were observed. YY1/miR-320a/TFRC and ferroptosis-related molecules were detected. An MNNG-induced gastric epithelial cell model was established in vitro to evaluate the inhibitory effect of XLHZ on cell ferroptosis by observing cell proliferation, migration, invasion, apoptosis, and molecules related to ferroptosis. The specific mechanism of action of XLHZ in treating CAG was elucidated by silencing or overexpression of targets. RESULTS: In vivo experiments showed that XLHZ could improve the pathological status and ultrastructure of gastric mucosa and inhibit ferroptosis by regulating the YY1/miR-320a/TFRC signaling pathway. The results in vitro demonstrated that transfection of miR-320a mimics inhibited cell proliferation, migration, and invasion while promoting cell apoptosis. MiR-320a targeted TFRC and inhibited ferroptosis. Overexpression of TFRC reversed the inhibitory effect of miR-320a overexpression on cell proliferation. The effect of XLHZ was consistent with that of miR-320a. YY1 targeted miR-320a, and its overexpression promoted ferroptosis. CONCLUSION: XLHZ inhibited ferroptosis by regulating the YY1/miR-320a/TFRC signaling pathway, ultimately impeding the progression of CAG.


Asunto(s)
Ferroptosis , Gastritis Atrófica , MicroARNs , Ratas , Animales , MicroARNs/genética , MicroARNs/metabolismo , Gastritis Atrófica/tratamiento farmacológico , Gastritis Atrófica/genética , Transducción de Señal , Proliferación Celular
7.
Nutrients ; 16(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38542816

RESUMEN

The meat derived from mammals such as cows, sheep, and pigs is commonly referred to as red meat. Recent studies have shown that consuming red meat can activate the immune system, produce antibodies, and subsequently develop into tumors and cancer. This is due to the presence of a potential carcinogenic compound in red meat called N-ethanol neuraminic acid (Neu5Gc). Neu5Gc is a common sialic monosaccharide in mammals, synthesized from N-acetylneuraminic acid (Neu5Ac) in the body and typically present in most mammals. However, due to the lack of the CMAH gene encoding the cytidine 5'-monophosphate Neu5Ac hydroxylase, humans are unable to synthesize Neu5Gc. Compared to primates such as mice or chimpanzees, the specific loss of Neu5Gc expression in humans is attributed to fixed genome mutations in CMAH. Although Neu5Gc cannot be produced, it can be introduced from specific dietary sources such as red meat and milk, so it is necessary to use mice or chimpanzees that knock out the CMAH gene instead of humans as experimental models. Further research has shown that early pregnancy factor (EPF) has the ability to regulate CD4+T cell-dependent immune responses. In this study, we established a simulated human animal model using C57/BL6 mice with CMAH gene knockout and analyzed the inhibitory effect of EPF on red meat Neu5Gc-induced CMAH-/- C57/BL6 mouse antibody production and chronic inflammation development. The results showed that the intervention of EPF reduced slow weight gain and shortened colon length in mice. In addition, EPF treatment significantly reduced the levels of anti Neu5Gc antibodies in the body, as well as the inflammatory factors IL-6 and IL-1ß, TNF-α and the activity of MPO. In addition, it also alleviated damage to liver and intestinal tissues and reduced the content of CD4 cells and the expression of B cell activation molecules CD80 and CD86 in mice. In summary, EPF effectively inhibited Neu5Gc-induced antibody production, reduced inflammation levels in mice, and alleviated Neu5Gc-induced inflammation. This will provide a new re-search concept and potential approach for developing immunosuppressants to address safety issues related to long-term consumption of red meat.


Asunto(s)
Chaperonina 10 , Neoplasias , Proteínas Gestacionales , Carne Roja , Factores Supresores Inmunológicos , Femenino , Animales , Humanos , Ratones , Bovinos , Porcinos , Ovinos , Pan troglodytes , Formación de Anticuerpos , Primates , Inflamación , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA