RESUMEN
Na-based layered transition metal oxides with an O3-type structure are considered promising cathodes for sodium-ion batteries. However, rapid capacity fading, and poor rate performance caused by serious structural changes and interfacial degradation hamper their use. In this study, a NaPO3 surface modified O3-type layered NaNi1/3 Fe1/3 Mn1/3 O2 cathode is synthesized, with improved high-voltage stability through protecting layer against acid attack, which is achieved by a solid-gas reaction between the cathode particles and gaseous P2 O5 . The NaPO3 nanolayer on the surface effectively stabilizes the crystal structure by inhibiting surface parasitic reactions and increasing the observed average voltage. Superior cyclic stability is exhibited by the surface-modified cathode (80.1% vs 63.6%) after 150 cycles at 1 C in the wide voltage range of 2.0 V-4.2 V (vs Na+ /Na). Moreover, benefiting from the inherent ionic conduction of NaPO3 , the surface-modified cathode presents excellent rate capability (103 mAh g-1 vs 60 mAh g-1 ) at 10 C. The outcome of this study demonstrates a practically relevant approach to develop high rate and durable sodium-ion battery technology.
RESUMEN
A practical approach to the direct α-methylation of 1,8-naphthyridines under mild reaction conditions has been developed using simple and readily available DMSO as a convenient and environmentally friendly carbon source. This method is transition metal-free and highly chemoselective, shows good functional group tolerance, and uses DMSO as a methyl source, providing efficient and rapid access to an important compound class, 2-methyl-1,8-naphthyridines.
RESUMEN
Ni-rich cathode materials exhibit superior energy densities and have attracted interest among both research and industrial fields; whereas, their practical application is hindered by the intrinsic drawbacks brought by the high nickel content such as structural instability and rapid capacity fading. Herein, in situ formation of a LiBO2 coating layer and spinel phase layer is achieved on the surface of a Ni-rich cathode material via a boric acid etching method at the precursor state. The spinel phase is considered to have a 3D lithium diffusion tunnel and hence faster diffusion kinetics. Moreover, the LiBO2 layer possesses excellent (electro)chemical inertness and can suppress electrolyte decomposition, resulting in a more inorganic and stable cathode-electrolyte interface. The surface reconstructed sample exhibits better cyclic stability (93.3% capacity retention vs 85.3% for the pristine sample at 1 C for 100 cycles) and rate performance. The superiority of this surface reconstruction is demonstrated by a series of electrochemical techniques and characterization methods including high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), post-mortem X-ray photoelectron spectroscopy (XPS) analysis, and density functional theory (DFT) calculations.
RESUMEN
This study presents an efficient strategy for constructing 1,2-difunctionalized quinoline derivatives via the multicomponent cascade coupling of N-heteroaromatics with alkyl halides and different terminal alkynes. This reaction was achieved through sequential functionalization at the one- and two-positions of quinolines, which displayed a broad substrate scope, environmental friendliness, excellent functional group tolerance, high atom efficiency, and chemoselectivity. The multicomponent coupling involved the abnormal construction of new C-N, CâC, and CâO bonds in one pot. The applicability of this method was further demonstrated by the late-stage functionalization of complex drug molecules under the established conditions.