Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharm Res ; 32(11): 3618-35, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26055403

RESUMEN

PURPOSE: To determine the effect of relative humidity (RH) and hydroxypropyl methylcellulose (HPMC) on the physico-mechanical properties of coprocessed MacroceLac(®) 100 using 'DM(3)' approach. METHODS: Effects of RH and 5% w/w HPMC on MacroceLac(®) 100 Compressibility Index (CI) and tablet mechanical strength (TMS) were evaluated by 'DM(3)'. The 'DM(3)' approach evaluates material properties by combining 'design of experiments', material's 'macroscopic' properties, 'molecular' properties, and 'multivariate analysis' tools. A 4X4 full-factorial experimental design was used to study the relationship of MacroceLac(®) 100 molecular properties (moisture content, dehydration, crystallization, fusion enthalpy, and moisture uptake) and macroscopic particle size and shape on CI and TMS. A physical binary mixture (PBM) of similar composition to MacroceLac(®) 100 was also evaluated. Multivariate analysis of variance (MANOVA), principle component analysis, and partial least squares (PLS) were used to analyze the data. RESULTS: MANOVA CI ranking was: PBM-HPMC > PBM > MicroceLac(®)100 > MicroceLac(®)100-HPMC (p < 0.0001). MANOVA showed PBM's and PBM-HPMC's TMS values were lower than MicroceLac(®)100 and MicroceLac(®)100-HPMC (p < 0.0001). PLS showed that % RH, HPMC, and several molecular properties significantly affected CI and TMS. CONCLUSIONS: Significant MicroceLac(®)100 changes occurred with % RH exposure affecting performance attributes. HPMC physical addition did not prevent molecular or macroscopic matrix changes.


Asunto(s)
Celulosa/química , Composición de Medicamentos/métodos , Excipientes/química , Derivados de la Hipromelosa/química , Lactosa/química , Comprimidos/química , Cristalización , Modelos Químicos , Análisis Multivariante , Análisis de Componente Principal , Proyectos de Investigación , Propiedades de Superficie , Comprimidos/normas , Resistencia a la Tracción , Agua/química
2.
J Pharm Sci ; 103(12): 4012-4020, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25332106

RESUMEN

The superdisintegrants (SDs) moisture content measurement by near-infrared (NIR) spectroscopy and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy has been evaluated against thermogravimetric analysis as a reference method. SDs with varying moisture content were used to build calibration and independent model verification data sets. Calibration models were developed based on the water-specific NIR and ATR-FTIR spectral regions using partial least-square regression methods. Because of the NIR water low molar absorptivity, NIR spectroscopy handled higher moisture content (∼81%, w/w) than ATR-FTIR (∼25%, w/w). A two-way ANOVA test was performed to compare R(2) values obtained from measured and predicted moisture content (5%-25%, w/w) of SDs. No statistically significant difference was observed between the predictability of NIR and ATR-FTIR methods (p = 0.3504). However, the interactions between the two independent variables, SDs, and analytical methods were statistically significant (p = 0.0002), indicating that the predictability of the analytical method is material dependent. Thus, it would be important to recognize this highly dependent material and analytical method interaction when using NIR moisture analysis in process analytical technology to analyze and control critical quality and performance attributes of raw materials during processing with the goal of ensuring final product quality attributes.


Asunto(s)
Espectroscopía Infrarroja por Transformada de Fourier/métodos , Espectroscopía Infrarroja Corta/métodos , Calibración , Análisis de los Mínimos Cuadrados , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA