RESUMEN
OBJECTIVES: Using a radiomics framework to quantitatively analyze tumor shape and texture features in three dimensions, we tested its ability to objectively and robustly distinguish between benign and malignant renal masses. We assessed the relative contributions of shape and texture metrics separately and together in the prediction model. MATERIALS AND METHODS: Computed tomography (CT) images of 735 patients with 539 malignant and 196 benign masses were segmented in this retrospective study. Thirty-three shape and 760 texture metrics were calculated per tumor. Tumor classification models using shape, texture, and both metrics were built using random forest and AdaBoost with tenfold cross-validation. Sensitivity analyses on five sub-cohorts with respect to the acquisition phase were conducted. Additional sensitivity analyses after multiple imputation were also conducted. Model performance was assessed using AUC. RESULTS: Random forest classifier showed shape metrics featuring within the top 10% performing metrics regardless of phase, attaining the highest variable importance in the corticomedullary phase. Convex hull perimeter ratio is a consistently high-performing shape feature. Shape metrics alone achieved an AUC ranging 0.64-0.68 across multiple classifiers, compared with 0.67-0.75 and 0.68-0.75 achieved by texture-only and combined models, respectively. CONCLUSION: Shape metrics alone attain high prediction performance and high variable importance in the combined model, while being independent of the acquisition phase (unlike texture). Shape analysis therefore should not be overlooked in its potential to distinguish benign from malignant tumors, and future radiomics platforms powered by machine learning should harness both shape and texture metrics. KEY POINTS: ⢠Current radiomics research is heavily weighted towards texture analysis, but quantitative shape metrics should not be ignored in their potential to distinguish benign from malignant renal tumors. ⢠Shape metrics alone can attain high prediction performance and demonstrate high variable importance in the combined shape and texture radiomics model. ⢠Any future radiomics platform powered by machine learning should harness both shape and texture metrics, especially since tumor shape (unlike texture) is independent of the acquisition phase and more robust from the imaging variations.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Carcinoma de Células Renales/diagnóstico por imagen , Diagnóstico Diferencial , Humanos , Neoplasias Renales/diagnóstico por imagen , Estudios Retrospectivos , Tomografía Computarizada por Rayos XRESUMEN
OBJECTIVE: To investigate whether morphologic analysis can differentiate between benign and malignant renal tumors on clinically acquired imaging. MATERIALS AND METHODS: Between 2009 and 2014, 3-dimensional tumor volumes were manually segmented from contrast-enhanced computerized tomography (CT) images from 150 patients with predominantly solid, nonmacroscopic fat-containing renal tumors: 100 renal cell carcinomas and 50 benign lesions (eg, oncocytoma and lipid-poor angiomyolipoma). Tessellated 3-dimensional tumor models were created from segmented voxels using MATLAB code. Eleven shape descriptors were calculated: sphericity, compactness, mean radial distance, standard deviation of the radial distance, radial distance area ratio, zero crossing, entropy, Feret ratio, convex hull area and convex hull perimeter ratios, and elliptic compactness. Morphometric parameters were compared using the Wilcoxon rank-sum test to investigate whether malignant renal masses demonstrate more morphologic irregularity than benign ones. RESULTS: Only CHP in sagittal orientation (median 0.96 vs 0.97) and EC in coronal orientation (median 0.92 vs 0.93) differed significantly between malignant and benign masses (P = .04). When comparing these 2 metrics between coronal and sagittal orientations, similar but nonsignificant trends emerged (P = .07). Other metrics tested were not significantly different in any imaging plane. CONCLUSION: Computerized image analysis is feasible using shape descriptors that otherwise cannot be visually assessed and used without quantification. Shape analysis via the transverse orientation may be reasonable, but encompassing all 3 planar dimensions to characterize tumor contour can achieve a more comprehensive evaluation. Two shape metrics (CHP and EC) may help distinguish benign from malignant renal tumors, an often challenging goal to achieve on imaging and biopsy.