Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
EMBO J ; 37(13)2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29866703

RESUMEN

Wound angiogenesis is an integral part of tissue repair and is impaired in many pathologies of healing. Here, we investigate the cellular interactions between innate immune cells and endothelial cells at wounds that drive neoangiogenic sprouting in real time and in vivo Our studies in mouse and zebrafish wounds indicate that macrophages are drawn to wound blood vessels soon after injury and are intimately associated throughout the repair process and that macrophage ablation results in impaired neoangiogenesis. Macrophages also positively influence wound angiogenesis by driving resolution of anti-angiogenic wound neutrophils. Experimental manipulation of the wound environment to specifically alter macrophage activation state dramatically influences subsequent blood vessel sprouting, with premature dampening of tumour necrosis factor-α expression leading to impaired neoangiogenesis. Complementary human tissue culture studies indicate that inflammatory macrophages associate with endothelial cells and are sufficient to drive vessel sprouting via vascular endothelial growth factor signalling. Subsequently, macrophages also play a role in blood vessel regression during the resolution phase of wound repair, and their absence, or shifted activation state, impairs appropriate vessel clearance.


Asunto(s)
Macrófagos/fisiología , Neovascularización Fisiológica , Cicatrización de Heridas/fisiología , Animales , Animales Modificados Genéticamente , Células Cultivadas , Diagnóstico por Imagen , Fibroblastos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones Endogámicos C57BL , Pez Cebra/genética
2.
J Cell Sci ; 133(5)2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31444283

RESUMEN

Implanting biomaterials in tissues leads to inflammation and a foreign body response (FBR), which can result in rejection. Here, we live image the FBR triggered by surgical suture implantation in a translucent zebrafish model and compare with an acute wound response. We observe inflammation extending from the suture margins, correlating with subsequent avascular and fibrotic encapsulation zones: sutures that induce more inflammation result in increased zones of avascularity and fibrosis. Moreover, we capture macrophages as they fuse to become multinucleate foreign body giant cells (FBGCs) adjacent to the most pro-inflammatory sutures. Genetic and pharmacological dampening of the inflammatory response minimises the FBR (including FBGC generation) and normalises the status of the tissue surrounding these sutures. This model of FBR in adult zebrafish allows us to live image the process and to modulate it in ways that may lead us towards new strategies to ameliorate and circumvent FBR in humans.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Materiales Biocompatibles , Reacción a Cuerpo Extraño/patología , Células Gigantes de Cuerpo Extraño/ultraestructura , Implantes Experimentales , Animales , Adhesión Celular , Forma de la Célula , Fibrosis , Células Gigantes de Cuerpo Extraño/citología , Modelos Animales , Pez Cebra
3.
PLoS Biol ; 9(10): e1001168, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21990962

RESUMEN

Locomotor strategies in terrestrial tetrapods have evolved from the utilisation of sinusoidal contractions of axial musculature, evident in ancestral fish species, to the reliance on powerful and complex limb muscles to provide propulsive force. Within tetrapods, a hindlimb-dominant locomotor strategy predominates, and its evolution is considered critical for the evident success of the tetrapod transition onto land. Here, we determine the developmental mechanisms of pelvic fin muscle formation in living fish species at critical points within the vertebrate phylogeny and reveal a stepwise modification from a primitive to a more derived mode of pelvic fin muscle formation. A distinct process generates pelvic fin muscle in bony fishes that incorporates both primitive and derived characteristics of vertebrate appendicular muscle formation. We propose that the adoption of the fully derived mode of hindlimb muscle formation from this bimodal character state is an evolutionary innovation that was critical to the success of the tetrapod transition.


Asunto(s)
Aletas de Animales/crecimiento & desarrollo , Evolución Biológica , Peces/crecimiento & desarrollo , Desarrollo de Músculos , Pelvis/crecimiento & desarrollo , Aletas de Animales/anatomía & histología , Animales , Animales Modificados Genéticamente , Peces/genética , Pelvis/anatomía & histología , Filogenia , Somitos/trasplante , Especificidad de la Especie
4.
Methods Mol Biol ; 2475: 325-337, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35451769

RESUMEN

The transparent, genetically tractable zebrafish is increasingly recognized as a useful model to both live image and uncover mechanistic insight into cell interactions governing tissue homeostasis, pathology, and regeneration. Here, we describe a protocol for the isolation of macrophages from zebrafish wounds using fluorescence-activated cell sorting (FACS), and the identification of specific pro-angiogenic macrophage populations that express high levels of vascular endothelial growth factor (vegf) using quantitative real-time PCR (qPCR). The cell dissociation and FACS sorting techniques have been optimized for immune cells and successfully used to isolate other fluorescently marked populations within the wound such as neutrophils and endothelial cells. More broadly, this protocol can be easily adapted to other contexts where identification of pro-angiogenic immune cells is transformative for understanding, from development to pathologies such as infection, cancer, and diabetes.


Asunto(s)
Factor A de Crecimiento Endotelial Vascular , Pez Cebra , Animales , Células Endoteliales , Citometría de Flujo/métodos , Larva/genética , Macrófagos , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor A de Crecimiento Endotelial Vascular/genética , Pez Cebra/genética
5.
Cells ; 10(9)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34571987

RESUMEN

The vasculature is comprised of endothelial cells that are heterogeneous in nature. From tissue resident progenitors to mature differentiated endothelial cells, the diversity of these populations allows for the formation, maintenance, and regeneration of the vascular system in development and disease, particularly during situations of wound healing. Additionally, the de-differentiation and plasticity of different endothelial cells, especially their capacity to undergo endothelial to mesenchymal transition, has also garnered significant interest due to its implication in disease progression, with emphasis on scarring and fibrosis. In this review, we will pinpoint the seminal discoveries defining the phenotype and mechanisms of endothelial heterogeneity in development and disease, with a specific focus only on wound healing.


Asunto(s)
Endotelio/inmunología , Endotelio/metabolismo , Cicatrización de Heridas/fisiología , Animales , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Células Endoteliales/patología , Transición Epitelial-Mesenquimal , Fibrosis , Humanos , Neovascularización Fisiológica/fisiología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta , Lesiones del Sistema Vascular/fisiopatología , Cicatrización de Heridas/genética
6.
Elife ; 102021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34003110

RESUMEN

The formation of new blood vessel networks occurs via angiogenesis during development, tissue repair, and disease. Angiogenesis is regulated by intracellular endothelial signalling pathways, induced downstream of vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs). A major challenge in understanding angiogenesis is interpreting how signalling events occur dynamically within endothelial cell populations during sprouting, proliferation, and migration. Extracellular signal-regulated kinase (Erk) is a central downstream effector of Vegf-signalling and reports the signalling that drives angiogenesis. We generated a vascular Erk biosensor transgenic line in zebrafish using a kinase translocation reporter that allows live-imaging of Erk-signalling dynamics. We demonstrate the utility of this line to live-image Erk activity during physiologically relevant angiogenic events. Further, we reveal dynamic and sequential endothelial cell Erk-signalling events following blood vessel wounding. Initial signalling is dependent upon Ca2+ in the earliest responding endothelial cells, but is independent of Vegfr-signalling and local inflammation. The sustained regenerative response, however, involves a Vegfr-dependent mechanism that initiates concomitantly with the wound inflammatory response. This work reveals a highly dynamic sequence of signalling events in regenerative angiogenesis and validates a new resource for the study of vascular Erk-signalling in real-time.


Asunto(s)
Células Endoteliales/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Sistema de Señalización de MAP Quinasas/fisiología , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica , Transducción de Señal , Animales , Células Cultivadas , Sistema de Señalización de MAP Quinasas/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra
7.
EMBO Mol Med ; 10(11)2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30143543

RESUMEN

Hypoxia is a hallmark of solid tumours and a key physiological feature distinguishing cancer from normal tissue. However, a major challenge remains in identifying tractable molecular targets that hypoxic cancer cells depend on for survival. Here, we used SILAC-based proteomics to identify the orphan G protein-coupled receptor GPRC5A as a novel hypoxia-induced protein that functions to protect cancer cells from apoptosis during oxygen deprivation. Using genetic approaches in vitro and in vivo, we reveal HIFs as direct activators of GPRC5A transcription. Furthermore, we find that GPRC5A is upregulated in the colonic epithelium of patients with mesenteric ischaemia, and in colorectal cancers high GPRC5A correlates with hypoxia gene signatures and poor clinical outcomes. Mechanistically, we show that GPRC5A enables hypoxic cell survival by activating the Hippo pathway effector YAP and its anti-apoptotic target gene BCL2L1 Importantly, we show that the apoptosis induced by GPRC5A depletion in hypoxia can be rescued by constitutively active YAP. Our study identifies a novel HIF-GPRC5A-YAP axis as a critical mediator of the hypoxia-induced adaptive response and a potential target for cancer therapy.


Asunto(s)
Adaptación Fisiológica , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias/patología , Fosfoproteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Adaptación Fisiológica/efectos de los fármacos , Animales , Antígenos de Neoplasias/metabolismo , Anhidrasa Carbónica IX/metabolismo , Hipoxia de la Célula/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxiciclina/farmacología , Humanos , Ratones Endogámicos C57BL , Modelos Biológicos , Neoplasias/genética , Transducción de Señal/efectos de los fármacos , Factores de Transcripción , Transcripción Genética/efectos de los fármacos , Proteínas Señalizadoras YAP , Pez Cebra
8.
Science ; 353(6295): aad9969, 2016 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-27198673

RESUMEN

Skeletal muscle is an example of a tissue that deploys a self-renewing stem cell, the satellite cell, to effect regeneration. Recent in vitro studies have highlighted a role for asymmetric divisions in renewing rare "immortal" stem cells and generating a clonal population of differentiation-competent myoblasts. However, this model currently lacks in vivo validation. We define a zebrafish muscle stem cell population analogous to the mammalian satellite cell and image the entire process of muscle regeneration from injury to fiber replacement in vivo. This analysis reveals complex interactions between satellite cells and both injured and uninjured fibers and provides in vivo evidence for the asymmetric division of satellite cells driving both self-renewal and regeneration via a clonally restricted progenitor pool.


Asunto(s)
División Celular/fisiología , Rastreo Celular/métodos , Músculo Esquelético/fisiología , Regeneración/fisiología , Células Satélite del Músculo Esquelético/fisiología , Animales , Animales Modificados Genéticamente , División Celular/genética , Células Clonales , Desarrollo de Músculos/genética , Desarrollo de Músculos/fisiología , Músculo Esquelético/embriología , Músculo Esquelético/lesiones , Mutación , Factor 5 Regulador Miogénico/genética , Miogenina/genética , Regeneración/genética , Células Satélite del Músculo Esquelético/citología , Transgenes , Pez Cebra
9.
FEBS J ; 280(17): 4074-88, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23607511

RESUMEN

The cellular basis for mammalian muscle regeneration has been an area of intense investigation over recent decades. The consensus is that a specialized self-renewing stem cell, termed the satellite cell, plays a major role during the process of regeneration in amniotes. How broadly this mechanism is deployed within the vertebrate phylogeny remains an open question. A lack of information on the role of cells analogous to the satellite cell in other vertebrate systems is even more unexpected given the fact that satellite cells were first designated in frogs. An intriguing aspect of this debate is that a number of amphibia and many fish species exhibit epimorphic regenerative processes in specific tissues, whereby regeneration occurs by the dedifferentiation of the damaged tissue, without deploying specialized stem cell populations analogous to satellite cells. Hence, it is feasible that a cellular process completely distinct from that deployed during mammalian muscle regeneration could operate in species capable of epimorphic regeneration. In this minireview, we examine the evidence for the broad phylogenetic distribution of satellite cells. We conclude that, in the vertebrates examined so far, epimorphosis does not appear to be deployed during muscle regeneration, and that analogous cells expressing similar marker genes to satellite cells appear to be deployed during the regenerative process. However, the functional definition of these cells as self-renewing muscle stem cells remains a final hurdle to the definition of the satellite cell as a generic vertebrate cell type.


Asunto(s)
Desarrollo de Músculos/fisiología , Mioblastos/citología , Regeneración/fisiología , Células Satélite del Músculo Esquelético/citología , Pez Cebra/fisiología , Animales , Mioblastos/fisiología , Células Satélite del Músculo Esquelético/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA