RESUMEN
A significant fraction of Earth's ecosystems undergoes periodic wet-dry alternating transitional states. These globally distributed water-driven transitional ecosystems, such as intermittent rivers and coastal shorelines, have traditionally been studied as two distinct entities, whereas they constitute a single, interconnected meta-ecosystem. This has resulted in a poor conceptual and empirical understanding of water-driven transitional ecosystems. Here, we develop a conceptual framework that places the temporal availability of water as the core driver of biodiversity and functional patterns of transitional ecosystems at the global scale. Biological covers (e.g., aquatic biofilms and biocrusts) serve as an excellent model system thriving in both aquatic and terrestrial states, where their succession underscores the intricate interplay between these two states. The duration, frequency, and rate of change of wet-dry cycles impose distinct plausible scenarios where different types of biological covers can occur depending on their desiccation/hydration resistance traits. This implies that the distinct eco-evolutionary potential of biological covers, represented by their trait profiles, would support different functions while maintaining similar multifunctionality levels. By embracing multiple alternating transitional states as interconnected entities, our approach can help to better understand and manage global change impacts on biodiversity and multifunctionality in water-driven transitional ecosystems, while providing new avenues for interdisciplinary studies.
Asunto(s)
Biodiversidad , Ecosistema , BiopelículasRESUMEN
Streams are significant contributors of greenhouse gases (GHG) to the atmosphere, and the increasing number of stressors degrading freshwaters may exacerbate this process, posing a threat to climatic stability. However, it is unclear whether the influence of multiple stressors on GHG concentrations in streams results from increases of in-situ metabolism (i.e., local processes) or from changes in upstream and terrestrial GHG production (i.e., distal processes). Here, we hypothesize that the mechanisms controlling multiple stressor effects vary between carbon dioxide (CO2) and methane (CH4), with the latter being more influenced by changes in local stream metabolism, and the former mainly responding to distal processes. To test this hypothesis, we measured stream metabolism and the concentrations of CO2 (pCO2) and CH4 (pCH4) in 50 stream sites that encompass gradients of nutrient enrichment, oxygen depletion, thermal stress, riparian degradation and discharge. Our results indicate that these stressors had additive effects on stream metabolism and GHG concentrations, with stressor interactions explaining limited variance. Nutrient enrichment was associated with higher stream heterotrophy and pCO2, whereas pCH4 increased with oxygen depletion and water temperature. Discharge was positively linked to primary production, respiration and heterotrophy but correlated negatively with pCO2. Our models indicate that CO2-equivalent concentrations can more than double in streams that experience high nutrient enrichment and oxygen depletion, compared to those with oligotrophic and oxic conditions. Structural equation models revealed that the effects of nutrient enrichment and discharge on pCO2 were related to distal processes rather than local metabolism. In contrast, pCH4 responses to nutrient enrichment, discharge and temperature were related to both local metabolism and distal processes. Collectively, our study illustrates potential climatic feedbacks resulting from freshwater degradation and provides insight into the processes mediating stressor impacts on the production of GHG in streams.
Os rios são grandes emissores de gases com efeito de estufa (GEE) para a atmosfera, e o crescente número de agentes de stress que degradam os rios pode exacerbar este processo, e constituir uma ameaça à estabilidade climática. No entanto, não é claro se o efeito dos impactos humanos nas concentrações de GEE na água está associado ao aumento do metabolismo local do rio (processos locais) ou ao aumento da produção de GEE nas zonas a montante dos rios ou nas zonas terrestres adjacentes (processos distais). A nossa hipótese é que os mecanismos que controlam os efeitos dos impactos humanos na emissão de GEE variam entre o dióxido de carbono (CO2) e o metano (CH4). A nossa previsão é que o CO2 responde principalmente a processos distais, enquanto o CH4 é mais influenciado por alterações no metabolismo local dos cursos de água. Para avaliar esta hipótese, medimos o metabolismo aquático e as concentrações de CO2 (pCO2) e CH4 (pCH4) em 50 rios que abrangem gradientes de enriquecimento em nutrientes, depleção de oxigénio, stress térmico, degradação da zona ribeirinha e caudal. Os nossos resultados indicam que estes agentes de stress tiveram efeitos aditivos no metabolismo e nas concentrações de GEE nos rios, e que as interações entre os agentes de stress tiveram pouca capacidade preditiva. O enriquecimento em nutrientes foi associado a um aumento da heterotrofia e pCO2, enquanto o pCH4 aumentou com a depleção de oxigénio e com a temperatura da água. O caudal estava positivamente correlacionado com a produção primária, a respiração e a heterotrofia, mas negativamente correlacionado com o pCO2. Os nossos modelos indicam que as concentrações equivalentes de CO2 podem duplicar em rios eutrofizados e com baixa concentração de oxigénio, em comparação com os rios oligotróficos e com águas bem oxigenadas. A aplicação de modelos de equações estruturais mostrou que os efeitos do enriquecimento em nutrientes e do caudal no pCO2 estavam relacionados com processos distais e não com o metabolismo local. Em contrapartida, as respostas do pCH4 ao enriquecimento de nutrientes, ao caudal e à temperatura estavam relacionadas tanto com o metabolismo local como com processos distais. O nosso estudo demonstra que a degradação dos rios e dos ecossistemas ribeirinhos pode ter efeitos negativos na estabilidade climática e fornece informação relevante sobre os processos biogeoquímicos que medeiam os impactos humanos na produção de GEE nos rios.
Asunto(s)
Dióxido de Carbono , Gases de Efecto Invernadero , Metano , Ríos , Gases de Efecto Invernadero/análisis , Ríos/química , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Metano/análisis , Metano/metabolismo , Cambio Climático , Temperatura , Oxígeno/análisis , Oxígeno/metabolismoRESUMEN
We modeled feeding of the Atlantic salmon (Salmo salar) parr to understand the role of global (cross-continental) and regional (river) spatial scales for delineating feeding patterns. The diet composition differed between Eurasia and North America populations. Geographic location (latitude and elevation) had an influence for the most common prey (Ephemeroptera, Diptera and Plecoptera). The random factors (sampling location and river) had a strong explanatory power in our models, suggesting that local drivers may override the effects of large-scale drivers.
Asunto(s)
Conducta Alimentaria , Salmo salar , Animales , Salmo salar/fisiología , Ríos , Dieta/veterinaria , América del Norte , Geografía , Europa (Continente) , Modelos BiológicosRESUMEN
River conservation efforts traditionally focus on perennial watercourses (i.e., those that do not dry) and their associated aquatic biodiversity. However, most of the global river network is not perennial and thus supports both aquatic and terrestrial biodiversity. We assessed the conservation value of nonperennial rivers and streams (NPRS) in one of Europe's driest regions based on aquatic (macroinvertebrates, diatoms) and terrestrial (riparian plants, birds, and carabid beetles) community data. We mapped the distribution of taxa at 90 locations and across wide environmental gradients. Using the systematic planning tool Marxan, we identified priority conservation sites under 2 scenarios: aquatic taxa alone or aquatic and terrestrial taxa together. We explored how environmental factors (runoff, flow intermittence, elevation, salinity, anthropogenic impact) influenced Marxan's site selection frequency. The NPRS were selected more frequently (over 13% on average) than perennial rivers when both aquatic and terrestrial taxa were considered, suggesting that NPRS have a high conservation value at the catchment scale. We detected an underrepresentation of terrestrial taxa (8.4-10.6% terrestrial vs. 0.5-1.1% aquatic taxa were unrepresented in most Marxan solutions) when priority sites were identified based exclusively on aquatic biodiversity, which points to a low surrogacy value of aquatic taxa for terrestrial taxa. Runoff explained site selection when focusing on aquatic taxa (all best-fitting models included runoff, r2 = 0.26-0.27), whereas elevation, salinity, and flow intermittence were more important when considering both groups. In both cases, site selection frequency declined as anthropogenic impact increased. Our results highlight the need to integrate terrestrial and aquatic communities when identifying priority areas for conservation in catchments with NPRS. This is key to overcoming drawbacks of traditional assessments based only on aquatic taxa and to ensure the conservation of NPRS, especially as NPRS become more prevalent worldwide due to climate change and increasing water demands.
Los esfuerzos de conservación fluvial se enfocan tradicionalmente en los cauces permanentes (aquellos que no se secan) y la biodiversidad acuática asociada. Sin embargo, la mayor parte de la red hidrográfica mundial no es permanente, por lo que sustenta biodiversidad tanto acuática como terrestre. Evaluamos el valor de conservación de los ríos y arroyos no permanentes (RANP) en una de las regiones más secas de Europa con datos de comunidades acuáticas (macroinvertebrados, diatomeas) y terrestres (escarabajos carábidos). Mapeamos la distribución de los taxones en 90 localidades que cubren gradientes ambientales amplios. Con la herramienta de planificación sistemática Marxan identificamos los sitios prioritarios de conservación bajo dos escenarios: considerando sólo los taxones acuáticos o los taxones acuáticos y terrestres juntos. Exploramos cómo los factores ambientales (escorrentía, intermitencia del caudal, altitud, salinidad, impacto antropogénico) influyeron sobre la frecuencia de selección de sitio de Marxan. Los RANP fueron seleccionados con mayor frecuencia (más del 13% en promedio) que los ríos permanentes cuando consideramos los taxones acuáticos y terrestres, lo que sugiere que los RANP tienen un valor elevado de conservación a escala de cuenca. Detectamos que los taxones terrestres estaban infrarrepresentados (8.4-10.6% taxones terrestres vs. 0.5-1.1% acuáticos no tuvieron representación en la mayoría de las soluciones de Marxan) cuando los sitios prioritarios para la conservación se identificaban exclusivamente con la biodiversidad acuática, lo que indica que los taxones acuáticos tienen un reducido valor indicador para los taxones terrestres. La escorrentía determinó la selección de sitios cuando se basó en los taxones acuáticos (los mejores modelos incluyeron la escorrentía, r2 = 0.26-0.27), mientras que la altitud, la salinidad y la intermitencia del caudal fueron más importantes cuando se consideraron ambos grupos. En ambos casos, la frecuencia de selección disminuyó conforme se incrementó el impacto antropogénico. Nuestros resultados resaltan la necesidad de integrar las comunidades terrestres y acuáticas a la identificación de las áreas prioritarias para la conservación de la biodiversidad en cuencas con RANP. Lo anterior es importante para superar las evaluaciones tradicionales basadas solamente en los taxones acuáticos y para garantizar la conservación de los RANP, especialmente ahora que estos son cada vez más frecuentes a nivel mundial debido al cambio climático y a la creciente demanda de agua.
Asunto(s)
Ecosistema , Ríos , Conservación de los Recursos Naturales , Monitoreo del Ambiente/métodos , BiodiversidadRESUMEN
Concern for megafauna is increasing among scientists and non-scientists. Many studies have emphasized that megafauna play prominent ecological roles and provide important ecosystem services to humanity. But, what precisely are 'megafauna'? Here, we critically assess the concept of megafauna and propose a goal-oriented framework for megafaunal research. First, we review definitions of megafauna and analyse associated terminology in the scientific literature. Second, we conduct a survey among ecologists and palaeontologists to assess the species traits used to identify and define megafauna. Our review indicates that definitions are highly dependent on the study ecosystem and research question, and primarily rely on ad hoc size-related criteria. Our survey suggests that body size is crucial, but not necessarily sufficient, for addressing the different applications of the term megafauna. Thus, after discussing the pros and cons of existing definitions, we propose an additional approach by defining two function-oriented megafaunal concepts: 'keystone megafauna' and 'functional megafauna', with its variant 'apex megafauna'. Assessing megafauna from a functional perspective could challenge the perception that there may not be a unifying definition of megafauna that can be applied to all eco-evolutionary narratives. In addition, using functional definitions of megafauna could be especially conducive to cross-disciplinary understanding and cooperation, improvement of conservation policy and practice, and strengthening of public perception. As megafaunal research advances, we encourage scientists to unambiguously define how they use the term 'megafauna' and to present the logic underpinning their definition.
Asunto(s)
Conservación de los Recursos Naturales , Animales , Evolución Biológica , Tamaño Corporal , Extinción BiológicaRESUMEN
The effect of stressors on biodiversity can vary in relation to the degree to which biological communities have adapted over evolutionary time. We compared the responses of functional features of stream insect communities along chronic stress gradients with contrasting time persistence. Water salinity and land use intensification were used as examples of natural (long-term persistent) and anthropogenic (short-term persistent) stressors, respectively. A new trait-based approach was applied to quantify functional diversity components and functional redundancy within the same multidimensional space, using metrics at the taxon and community levels. We found similar functional responses along natural and anthropogenic stress gradients. In both cases, the mean taxon functional richness and functional similarity between taxa increased with stress, whereas community functional richness and functional redundancy decreased. Despite the differences in evolutionary persistence, both chronic stressors act as strong nonrandom environmental filters, producing convergent functional responses. These results can improve our ability to predict functional effects of novel stressors at ecoloiical and evolutionary scales.
Asunto(s)
Ecosistema , Actividades Humanas , Insectos/fisiología , Modelos Biológicos , Ríos/química , Agricultura , Animales , Calentamiento Global , Humanos , Salinidad , Estrés Fisiológico , Agua/químicaRESUMEN
Water availability is a fundamental driver of biogeochemical processing in highly dynamic ecosystems such as intermittent rivers and ephemeral streams (IRES), which are recognized as the most common fluvial ecosystem globally. Because of their global extent, IRES have a remarkable contribution to organic matter processing, which is expected to intensify as climate change and water extraction expand IRES extension. Nevertheless, the effect of the complexity of the drying process on river biogeochemistry remains unclear. This study investigated how drying aspects affect the dissolved organic carbon (DOC) concentration and composition in 35 streams along a wide flow-intermittence gradient in the NE Iberian Peninsula. To do that, four drying aspects: annual drying duration, annual frequency, duration of the last drying event, and time since the last drying event were characterized. Results showed that DOC concentration and the contribution of humic-like compounds were positively associated with intensifying drying conditions. In addition, protein-like compounds decreased over the drying gradient. More specifically, changes in DOC concentration were driven mainly by annual drying duration, whereas annual drying frequency and the duration of the last drying event jointly explained dissolved organic matter composition. These results suggest that the quantity and composition of dissolved organic matter in streams respond differently to the temporal aspects of the drying process. Our study can help to better anticipate changes in organic matter in the context of climate change.
Asunto(s)
Ecosistema , Ríos , Ríos/química , Materia Orgánica Disuelta , Cambio Climático , Agua , CarbonoRESUMEN
Despite advances in conceptual understanding, single-stressor abatement approaches remain common in the management of fresh waters, even though they can produce unexpected ecological responses when multiple stressors interact. Here we identify limitations restricting the development of multiple-stressor management strategies and address these, bridging theory and practice, within a novel empirical framework. Those critical limitations include that (i) monitoring schemes fall short of accounting for theory on relationships between multiple-stressor interactions and ecological responses, (ii) current empirical modelling approaches neglect the prevalence and intensity of multiple-stressor interactions, and (iii) mechanisms of stressor interactions are often poorly understood. We offer practical recommendations for the use of empirical models and experiments to predict the effects of freshwater degradation in response to changes in multiple stressors, demonstrating this approach in a case study. Drawing on our framework, we offer practical recommendations to support the development of effective management strategies in three general multiple-stressor scenarios.
Asunto(s)
Ecosistema , Agua Dulce , RíosRESUMEN
Conferences are ideal platforms for studying gender gaps in science because they are important cultural events that reflect barriers to women in academia. Here, we explored women's participation in ecology conferences by analyzing female representation, behavior, and personal experience at the 1st Meeting of the Iberian Society of Ecology (SIBECOL). The conference had 722 attendees, 576 contributions, and 27 scientific sessions. The gender of attendees and presenters was balanced (48/52% women/men), yet only 29% of the contributions had a woman as last author. Moreover, men presented most of the keynote talks (67%) and convened most of the sessions. Our results also showed that only 32% of the questions were asked by women, yet the number of questions raised by women increased when the speaker or the convener was a woman. Finally, the post-conference survey revealed that attendees had a good experience and did not perceive the event as a threatening context for women. Yet, differences in the responses between genders suggest that women tended to have a worse experience than their male counterparts. Although our results showed clear gender biases, most of the participants of the conference failed to detect it. Overall, we highlight the challenge of increasing women's scientific leadership, visibility and interaction in scientific conferences and we suggest several recommendations for creating inclusive meetings, thereby promoting equal opportunities for all participants.
Asunto(s)
Ecología/métodos , Conducta , Femenino , Humanos , Liderazgo , Masculino , Percepción , SexismoRESUMEN
Hydrology is the main driver of dissolved organic matter (DOM) dynamics in intermittent rivers and ephemeral streams. However, it is still unclear how the timing and the spatial variation in flow connectivity affect the dynamics of DOM and inorganic solutes. This study focuses on the impact of flow cessation on the temporal and spatial heterogeneity of DOM quantity and quality along an intermittent stream. We monitored a headwater intermittent stream at high spatial and temporal frequencies during a summer drying episode and analysed dissolved organic carbon (DOC) and its spectroscopic properties, inorganic solutes and dissolved CO2. The drying period determined the disruption of the fluvial continuum with a recession of stream continuum at a rate of ~60 m/d and the gradual formation of a patched system of isolated pools of different sizes. Our results showed that the period of time that had elapsed since isolated pool formation (CI-days) was an essential factor for understanding how drying shaped the biogeochemistry of the fluvial system. Overall, drying caused a high DOC concentration and an increase in the humic-like fluorescence signal. Additionally, solutes showed contrasting responses to hydrological disconnection. Electrical conductivity, for instance, is a clear "sentinel" of the fragmentation process because it starts to increase before the hydrological disruption occurs. In contrast, DOC, most spectroscopic DOM descriptors and CO2 showed delayed responses of approximately 5-21 days after the formation of isolated pools. Furthermore, the spatial location and volume of each isolated pool seemed to exert a significant impact on most variables. In contrast, the temperature did not follow a clear pattern. These findings indicate that the fragmentation of longitudinal hydrological connectivity does not induce a single biogeochemical response but rather stimulates a set of solute-specific responses that generates a complex biogeochemical mosaic in a single fluvial unit.
RESUMEN
The microbial decomposition of organic matter is a fundamental ecosystem process that transforms organic matter and fuels detritus-based food webs, influencing biogeochemical cycles such as C-cycling. The efficiency of this process can be compromised during the non-flow periods of intermittent and ephemeral streams (IRES). When water flow ceases, sediments represent the last wet habitat available to microorganisms and may play an important role in sustaining microbial decomposition. However, despite the increasing prevalence of IRES due to climate change and water abstraction, it is unclear to what degree the subsurface habitat can sustain microbial decomposition during non-flow periods. In order to gather information, we selected 20 streams across Catalonia (Spain) along a gradient of flow intermittency, where we measured microbial decomposition and fungal biomass by placing wood sticks in both the surface and subsurface zones (15 cm below the streambed) over the course of one hydrological year. Our results showed that microbial decomposition and fungal biomass were consistently greater in the subsurface zone than in the surface zone, when intermittency increased. Although flow intermittency was the main driver of both microbial decomposition and fungal biomass, phosphorus availability in the water, sediment C:N ratio and sediment grain size also played relevant roles in surface and subsurface organic matter processing. Thus, our findings demonstrate that although the OM processing in both zones decreases with increased intermittency, the subsurface zone made an important contribution during the non-flow periods in IRES. Therefore, subsurface activity during non-flow periods has the potential to affect and maintain ecosystem functioning.
Asunto(s)
Biodegradación Ambiental , Ecosistema , Ríos/microbiología , Microbiología del Agua , Hongos , Fósforo , Hojas de la Planta , EspañaRESUMEN
Dispersal is an essential process in population and community dynamics, but is difficult to measure in the field. In freshwater ecosystems, information on biological traits related to organisms' morphology, life history and behaviour provides useful dispersal proxies, but information remains scattered or unpublished for many taxa. We compiled information on multiple dispersal-related biological traits of European aquatic macroinvertebrates in a unique resource, the DISPERSE database. DISPERSE includes nine dispersal-related traits subdivided into 39 trait categories for 480 taxa, including Annelida, Mollusca, Platyhelminthes, and Arthropoda such as Crustacea and Insecta, generally at the genus level. Information within DISPERSE can be used to address fundamental research questions in metapopulation ecology, metacommunity ecology, macroecology and evolutionary ecology. Information on dispersal proxies can be applied to improve predictions of ecological responses to global change, and to inform improvements to biomonitoring, conservation and management strategies. The diverse sources used in DISPERSE complement existing trait databases by providing new information on dispersal traits, most of which would not otherwise be accessible to the scientific community.
Asunto(s)
Distribución Animal , Organismos Acuáticos , Invertebrados , Animales , Conservación de los Recursos Naturales , Ecología , Monitoreo del Ambiente , Europa (Continente)RESUMEN
Climate and land-use change drive a suite of stressors that shape ecosystems and interact to yield complex ecological responses (that is, additive, antagonistic and synergistic effects). We know little about the spatial scales relevant for the outcomes of such interactions and little about effect sizes. These knowledge gaps need to be filled to underpin future land management decisions or climate mitigation interventions for protecting and restoring freshwater ecosystems. This study combines data across scales from 33 mesocosm experiments with those from 14 river basins and 22 cross-basin studies in Europe, producing 174 combinations of paired-stressor effects on a biological response variable. Generalized linear models showed that only one of the two stressors had a significant effect in 39% of the analysed cases, 28% of the paired-stressor combinations resulted in additive effects and 33% resulted in interactive (antagonistic, synergistic, opposing or reversal) effects. For lakes, the frequencies of additive and interactive effects were similar for all spatial scales addressed, while for rivers these frequencies increased with scale. Nutrient enrichment was the overriding stressor for lakes, with effects generally exceeding those of secondary stressors. For rivers, the effects of nutrient enrichment were dependent on the specific stressor combination and biological response variable. These results vindicate the traditional focus of lake restoration and management on nutrient stress, while highlighting that river management requires more bespoke management solutions.
Asunto(s)
Ecosistema , Agua Dulce , Biota , Europa (Continente) , RíosRESUMEN
Naturally stressed ecosystems hold a unique fraction of biodiversity. However, they have been largely ignored in biomonitoring and conservation programmes, such as the EU Water Framework Directive, while global change pressures are threatening their singular values. Here we present a framework to classify and evaluate the ecological quality of naturally stressed rivers along a water salinity gradient. We gathered datasets, including aquatic macroinvertebrate assemblages and environmental information, for 243 river locations across the western Mediterranean to: a) gauge the role of natural stressors (salinity) in driving aquatic community richness and composition; b) make river classifications by encompassing the wide range of environmental and biological variation exhibited by Mediterranean rivers; c) provide effective biomonitoring metrics of ecological quality for saline rivers. Our results showed that water salinity played a pivotal role in explaining the community richness and compositional changes in rivers, even when considering other key and commonly used descriptors, such as elevation, climate or lithology. Both environmental and biologically-based classifications included seven river types: three types of freshwater perennial rivers, one freshwater intermittent river type and three new saline river types. These new saline types were not included in previous classifications. Their validation by independent datasets showed that the saline and freshwater river types represented differentiable macroinvertebrate assemblages at family and species levels. Biomonitoring metrics based on the abundance of indicator taxa of each saline river type provided a much better assessment of the ecological quality of saline rivers than other widely used biological metrics and indices. Here we demonstrate that considering natural stressors, such as water salinity, is essential to design effective and accurate biomonitoring programmes for rivers and to preserve their unique biodiversity.
Asunto(s)
Biodiversidad , Ecosistema , Monitoreo del Ambiente/métodos , Ríos/química , Salinidad , Animales , Italia , Marruecos , EspañaRESUMEN
Rivers are among the most sensitive of all ecosystems to the effects of global change, but options to prevent, mitigate or restore ecosystem damage are still inadequately understood. Riparian buffers are widely advocated as a cost-effective option to manage impacts, but empirical evidence is yet to identify ideal riparian features (e.g. width, length and density) which enhance ecological integrity and protect ecosystem services in the face of catchment-scale stressors. Here, we use an extensive literature review to synthesise evidence on riparian buffer and catchment management effects on instream environmental conditions (e.g. nutrients, fine sediments, organic matter), river organisms and ecosystem functions. We offer a conceptual model of the mechanisms through which catchment or riparian management might impact streams either positively or negatively. The model distinguishes scale-independent benefits (shade, thermal damping, organic matter and large wood inputs) that arise from riparian buffer management at any scale from scale-dependent benefits (nutrient or fine sediment retention) that reflect stressor conditions at broader (sub-catchment to catchment) scales. The latter require concerted management efforts over equally large domains of scale (e.g. riparian buffers combined with nutrient restrictions). The evidence of the relationships between riparian configuration (width, length, zonation, density) and scale-independent benefits is consistent, suggesting a high certainty of the effects. In contrast, scale-dependent effects as well as the biological responses to riparian management are more uncertain, suggesting that ongoing diffuse pollution (nutrients, sediments), but also sources of variability (e.g. hydrology, climate) at broader scales may interfere with the effects of local riparian management. Without concerted management across relevant scales, full biological recovery of damaged lotic ecosystems is unlikely. There is, nevertheless, sufficient evidence that the benefits of riparian buffers outweigh potential adverse effects, in particular if located in the upstream part of the stream network. This supports the use of riparian restoration as a no-regrets management option to improve and sustain lotic ecosystem functioning and biodiversity.
Asunto(s)
Conservación de los Recursos Naturales , Modelos Teóricos , Ríos , EcosistemaRESUMEN
Interactions between climate change and land use change might have substantial effects on aquatic ecosystems, but are still poorly understood. Using the Welsh River Wye as a case study, we linked models of water quality (Integrated Catchment - INCA) and climate (GFDL - Geophysical Fluid Dynamics Laboratory and IPSL - Institut Pierre Simon Laplace) under greenhouse gas scenarios (RCP4.5 and RCP8.5) to drive a bespoke ecosystem model that simulated the responses of aquatic organisms. The potential effects of economic and social development were also investigated using scenarios from the EU MARS project (Managing Aquatic Ecosystems and Water Resources under Multiple Stress). Longitudinal position along the river mediated response to increasing anthropogenic pressures. Upland locations appeared particularly sensitive to nutrient enrichment or potential re-acidification compared to lowland environments which are already eutrophic. These results can guide attempts to mitigate future impacts and reiterate the need for sensitive land management in upland, temperate environments which are likely to become increasingly important to water supply and biodiversity conservation as the effects of climate change intensify.
Asunto(s)
Cambio Climático , Ecosistema , Monitoreo del Ambiente/métodos , Modelos Teóricos , Ríos/química , Ecología , Guanina/análogos & derivados , GalesRESUMEN
Abiotic stress shapes how communities assemble and support ecological functions. However, it remains unclear whether artificially increasing or decreasing stress levels would lead to communities assembling predictably along a single axis of variation or along multiple context-dependent trajectories of change. In response to stress intensity alterations, we hypothesize that a single trajectory of change occurs when trait-based assembly prevails, while multiple trajectories of change arise when dispersal-related processes modify colonization and trait-filtering dynamics. Here, we tested these hypotheses using aquatic macroinvertebrates from rivers exposed to gradients of natural salinity and artificially diluted or salinized ion contents. Our results showed that trait-filtering was important in driving community assembly in natural and diluted rivers, while dispersal-related processes seemed to play a relevant role in response to salinization. Salinized rivers showed novel communities with different trait composition, while natural and diluted communities exhibited similar taxonomic and trait compositional patterns along the conductivity gradient. Our findings suggest that the artificial modification of chemical stressors can result in different biological communities, depending on the direction of the change (salinization or dilution), with trait-filtering, and organism dispersal and colonization dynamics having differential roles in community assembly. The approach presented here provides both empirical and conceptual insights that can help in anticipating the ecological effects of global change, especially for those stressors with both natural and anthropogenic origins.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.
Asunto(s)
Biota , Invertebrados/fisiología , Ríos/química , Salinidad , Animales , Monitoreo del Ambiente , Estrés FisiológicoRESUMEN
Considering how organisms adapt to stress is essential if we are to anticipate biological responses to global change in ecosystems. Communities in stressful environments can potentially be assembled by specialists (i.e. species that only occur in a limited range of environmental conditions) and/or generalist species with wider environmental tolerances. We review the existing literature on the salinity tolerance of aquatic insects previously identified as saline specialists because they were exclusively found in saline habitats, and explore if these saline realized niche specialists are also specialists in their fundamental niches or on the contrary are fundamental niche generalist species confined to the highest salinities they can tolerate. The results suggest that species inhabiting saline waters are generalists in their fundamental niches, with a predominant pattern of high survival in freshwater-low salinity conditions, where their fitness tends to be similar or even higher than in saline waters. Additionally, their performance in freshwater tends to be similar to related strictly freshwater species, so no apparent trade-off of generalization is shown. These results are discussed in the framework of the ecological and evolutionary processes driving community assembly across the osmotic stress gradient, and their potential implications for predicting impacts from saline dilution and freshwater salinization.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.
Asunto(s)
Biota , Insectos/fisiología , Rasgos de la Historia de Vida , Aguas Salinas , Tolerancia a la Sal , Animales , Agua DulceRESUMEN
Under global change, the ion concentration of aquatic ecosystems is changing worldwide. Many freshwater ecosystems are being salinized by anthropogenic salt inputs, whereas many naturally saline ones are being diluted by agricultural drainages. This occurs concomitantly with changes in other stressors, which can result in additive, antagonistic or synergistic effects on organisms. We reviewed experimental studies that manipulated salinity and other abiotic stressors, on inland and transitional aquatic habitats, to (i) synthesize their main effects on organisms' performance, (ii) quantify the frequency of joint effect types across studies and (iii) determine the overall individual and joint effects and their variation among salinity-stressor pairs and organism groups using meta-analyses. Additive effects were slightly more frequent (54%) than non-additive ones (46%) across all the studies (n = 105 responses). However, antagonistic effects were dominant for the stressor pair salinity and toxicants (44%, n = 43), transitional habitats (48%, n = 31) and vertebrates (71%, n = 21). Meta-analyses showed detrimental additive joint effects of salinity and other stressors on organism performance and a greater individual impact of salinity than the other stressors. These results were consistent across stressor pairs and organism types. These findings suggest that strategies to mitigate multiple stressor impacts on aquatic ecosystems should prioritize restoring natural salinity concentrations.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.
Asunto(s)
Organismos Acuáticos/fisiología , Agua Dulce/química , Salinidad , Estrés Fisiológico , Animales , Invertebrados/fisiología , Fenómenos Fisiológicos de las Plantas , Vertebrados/fisiologíaRESUMEN
Multiple abiotic stressors affect the ecological status of water bodies. The status of waterbodies in the Ebro catchment (NE Spain) is evaluated using the biological quality elements (BQEs) of diatoms, invertebrates and macrophytes. The multi-stressor influence on the three BQEs was evaluated using the monitoring dataset available from the catchment water authority. Nutrient concentrations, especially total phosphorus (TP), affected most of the analyzed BQEs, while changes in mean discharge, water temperature, or river morphology did not show significant influences. Linear statistical models were used to evaluate the change of water bodies' ecological status under different combinations of future socioeconomic and climate scenarios. Changes in land use, rainfall, water temperature, mean discharge, TP and nitrate concentrations were modeled according to the future scenarios. These revealed an evolution of the abiotic stressors that could lead to a general decrease in the ecosystem quality of water bodies within the Ebro catchment. This deterioration was especially evidenced on the diatoms and invertebrate biological indices, mainly because of the foreseen increase in TP concentrations. Water bodies located in the headwaters were seen as the most sensitive to future changes.