Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Curr Protoc ; 3(4): e758, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37099696

RESUMEN

Quantitative analysis of urine acylglycines has shown to be a highly sensitive and specific method with proven clinical utility for the diagnosis of several inherited metabolic disorders including: medium chain acyl-CoA dehydrogenase deficiency, multiple acyl-CoA dehydrogenase deficiency, short chain acyl-CoA dehydrogenase deficiency, 3-methylcrotonyl-CoA carboxylase deficiency, 2-methylbutyryl-CoA dehydrogenase deficiency, isovaleric acidemia, propionic academia, and isobutyryl-CoA dehydrogenase deficiency. Here, a method that is currently performed using ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) is described. © 2023 Wiley Periodicals LLC. Basic Protocol: Urinary acylglycine analysis by UPLC-MS/MS Support Protocol 1: Quality control preparation Support Protocol 2: Internal standard (ISTD) preparation Support Protocol 3: Standard (STD)/calibrator preparation.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Espectrometría de Masas en Tándem , Humanos , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Glicina
2.
Nat Biotechnol ; 23(2): 232-7, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15685165

RESUMEN

Standard microarrays measure mRNA abundance, not mRNA synthesis, and therefore cannot identify the mechanisms that regulate gene expression. We have developed a method to overcome this limitation by using the salvage enzyme uracil phosphoribosyltransferase (UPRT) from the protozoan Toxoplasma gondii. T. gondii UPRT has been well characterized because of its application in monitoring parasite growth: mammals lack this enzyme activity and thus only the parasite incorporates (3)H-uracil into its nucleic acids. In this study we used RNA labeling by UPRT to determine the roles of mRNA synthesis and decay in the control of gene expression during T. gondii asexual development. We also used this approach to specifically label parasite RNA during a mouse infection and to incorporate thio-substituted uridines into the RNA of human cells engineered to express T. gondii UPRT, indicating that engineered UPRT expression will allow cell-specific analysis of gene expression in organisms other than T. gondii.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Pentosiltransferasa/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional/fisiología , Animales , Humanos , Tasa de Depuración Metabólica , Pentosiltransferasa/química , ARN Mensajero/química , Transducción de Señal/fisiología , Coloración y Etiquetado/métodos , Toxoplasma/genética , Toxoplasma/metabolismo
3.
RNA ; 13(3): 396-403, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17255199

RESUMEN

Post-transcriptional modifications of RNA are nearly ubiquitous in the principal RNAs involved in translation. However, in the case of rRNA the functional roles of modification are far less established than for tRNA, and are subject to less knowledge in terms of specific nucleoside identities and their sequence locations. Post-transcriptional modifications have been studied in the SSU rRNA from Thermotoga maritima (optimal growth 80 degrees C), one of the most deeply branched organisms in the Eubacterial phylogenetic tree. A total of 10 different modified nucleosides were found, the greatest number reported for bacterial SSU rRNA, occupying a net of approximately 14 sequence sites, compared with a similar number of sites recently reported for Thermus thermophilus and 11 for Escherichia coli. The relatively large number of modifications in Thermotoga offers modest support for the notion that thermophile rRNAs are more extensively modified than those from mesophiles. Seven of the Thermotoga modified sites are identical (location and identity) to those in E. coli. An unusual derivative of cytidine was found, designated N-330 (Mr 330.117), and was sequenced to position 1404 in the decoding region of the rRNA. It was unexpectedly found to be identical to an earlier reported nucleoside of unknown structure at the same location in the SSU RNA of the archaeal mesophile Haloferax volcanii.


Asunto(s)
Citidina/metabolismo , Procesamiento Postranscripcional del ARN , ARN Ribosómico 16S/metabolismo , Thermotoga maritima/genética , Citidina/análisis , Nucleósidos/análisis , ARN Ribosómico 16S/química , Thermotoga maritima/metabolismo
4.
Biochemistry ; 45(15): 4888-99, 2006 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-16605256

RESUMEN

Posttranscriptional modification in RNA generally serves to fine-tune and regulate RNA structure and, in many cases, is relatively conserved and phylogenetically distinct. We report the complete modification map for SSU rRNA from Thermus thermophilus, determined primarily by HPLC/electrospray ionization MS-based methods. Thermus modification levels are significantly lower, and structures at the nucleoside level are very different from those of the archaeal thermophile Sulfolobus solfataricus growing in the same temperature range [Noon, K. R., et al. (1998) J. Bacteriol. 180, 2883-2888]. The Thermus modification map is unexpectedly similar to that of Escherichia coli (11 modified sites), with which it shares identity in 8 of the 14 modifications. Unlike the heavily methylated Sulfolobus SSU RNA, Thermus contains a single ribose-methylated residue, N(4),2'-O-dimethylcytidine-1402, suggesting that O-2'-ribose methylation in this bacterial thermophile plays a reduced role in thermostabilization compared with the thermophilic archaea. Adjacent pseudouridine residues were found in the single-stranded 3' tail of Thermus 16S rRNA at residues 1540 and 1541 (E. coli numbering) in the anti-Shine-Dalgarno mRNA binding sequence. The present results provide an example of the potential of LC/MS for extensive modification mapping in large RNAs.


Asunto(s)
Filogenia , Células Procariotas/metabolismo , Procesamiento Postranscripcional del ARN , ARN Ribosómico 16S/metabolismo , Thermus thermophilus/genética , Secuencia de Bases , Cromatografía Liquida , Modelos Biológicos , Datos de Secuencia Molecular , Procesamiento Postranscripcional del ARN/genética , ARN Ribosómico 16S/genética , Ribonucleasas/genética , Ribonucleasas/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Thermus thermophilus/metabolismo
5.
RNA ; 11(2): 210-9, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15659360

RESUMEN

The number and position of the pseudouridines of Haloarcula marismortui and Deinococcus radiodurans large subunit RNA have been determined by a combination of total nucleoside analysis by HPLC-mass spectrometry and pseudouridine sequencing by the reverse transcriptase method and by LC/MS/MS. Three pseudouridines were found in H. marismortui, located at positions 1956, 1958, and 2621 corresponding to Escherichia coli positions 1915, 1917, and 2586, respectively. The three pseudouridines are all in locations found in other organisms. Previous reports of a larger number of pseudouridines in this organism were incorrect. Three pseudouridines and one 3-methyl pseudouridine (m3Psi) were found in D. radiodurans 23S RNA at positions 1894, 1898 (m3Psi), 1900, and 2584, the m3Psi site being determined by a novel application of mass spectrometry. These positions correspond to E. coli positions 1911, 1915, 1917, and 2605, which are also pseudouridines in E. coli (1915 is m3Psi). The pseudouridines in the helix 69 loop, residues 1911, 1915, and 1917, are in positions highly conserved among all phyla. Pseudouridine 2584 in D. radiodurans is conserved in eubacteria and a chloroplast but is not found in archaea or eukaryotes, whereas pseudouridine 2621 in H. marismortui is more conserved in eukaryotes and is not found in eubacteria. All the pseudoridines are near, but not exactly at, nucleotides directly involved in various aspects of ribosome function. In addition, two D. radiodurans Psi synthases responsible for the four Psi were identified.


Asunto(s)
Deinococcus/química , Haloarcula marismortui/química , Seudouridina/análogos & derivados , Seudouridina/química , ARN de Archaea/química , ARN Bacteriano/química , ARN Ribosómico 23S/química , Secuencia de Bases , Deinococcus/genética , Escherichia coli/química , Escherichia coli/genética , Haloarcula marismortui/genética , Hidroliasas/genética , Conformación de Ácido Nucleico , ARN de Archaea/genética , ARN Bacteriano/genética , ARN Ribosómico 23S/genética
6.
Bioorg Chem ; 32(2): 82-91, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-14990307

RESUMEN

The wyeosine (or wye) family of tricyclic ribonucleosides from archaeal and eukaryal tRNA(Phe) constitutes one of the most complex and interesting series of posttranscriptional RNA modifications, and has been the object of numerous studies of their chemical and biological synthesis and distribution. We report the structures of two minimally elaborated wye derivatives from archaea, raising the known number of wye nucleosides to eight: 3,4-dihydro-6-methyl-3-beta-d-ribofuranosyl-9H-imidazo[1,2-a]purine-9-one (symbol imG-14), and 3,4-dihydro-6,7-dimethyl-3-beta-d-ribofuranosyl-9H-imidazo[1,2-a]purine-9-one (symbol imG2). Structures were determined primarily by mass spectrometry, and confirmed by comparison of physicochemical properties with those of chemically synthesized nucleosides. The nucleosides contain no amino acid side chains at C-7 (1H-imidazo[1,2-a]purine nomenclature) and are the only wye derivatives not methylated at N-4. These features suggest a minimal role for wye methyl groups and side chains in maintenance of anticodon stem-loop structures, and support the concept that archaeal tRNA nucleoside modification motifs are generally simpler than those of their counterparts in eukarya and bacteria.


Asunto(s)
Archaea/genética , Guanina/análogos & derivados , Nucleósidos/química , Nucleósidos/síntesis química , ARN de Transferencia/química , Guanina/química , Espectrometría de Masas , Estructura Molecular
7.
J Bacteriol ; 185(18): 5483-90, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12949100

RESUMEN

We report the first study of tRNA modification in psychrotolerant archaea, specifically in the archaeon Methanococcoides burtonii grown at 4 and 23 degrees C. For comparison, unfractionated tRNA from the archaeal hyperthermophile Stetteria hydrogenophila cultured at 93 degrees C was examined. Analysis of modified nucleosides using liquid chromatography-electrospray ionization mass spectrometry revealed striking differences in levels and identities of tRNA modifications between the two organisms. Although the modification levels in M. burtonii tRNA are the lowest in any organism of which we are aware, it contains more than one residue per tRNA molecule of dihydrouridine, a molecule associated with maintenance of polynucleotide flexibility at low temperatures. No differences in either identities or levels of modifications, including dihydrouridine, as a function of culture temperature were observed, in contrast to selected tRNA modifications previously reported for archaeal hyperthermophiles. By contrast, S. hydrogenophila tRNA was found to contain a remarkable structural diversity of 31 modified nucleosides, including nine methylated guanosines, with eight different nucleoside species methylated at O-2' of ribose, known to be an effective stabilizing motif in RNA. These results show that some aspects of tRNA modification in archaea are strongly associated with environmental temperature and support the thesis that posttranscriptional modification is a universal natural mechanism for control of RNA molecular structure that operates across a wide temperature range in archaea as well as bacteria.


Asunto(s)
Desulfurococcaceae/genética , Methanosarcinaceae/genética , Procesamiento Postranscripcional del ARN/fisiología , ARN de Transferencia/metabolismo , Temperatura , Uridina/análogos & derivados , División Celular/fisiología , Cromatografía Liquida/métodos , Desulfurococcaceae/crecimiento & desarrollo , Guanosina/metabolismo , Espectrometría de Masas/métodos , Methanosarcinaceae/crecimiento & desarrollo , Nucleósidos/análisis , Nucleósidos/química , ARN de Transferencia/química , ARN de Transferencia/genética , Ribosa/metabolismo , Especificidad de la Especie , Uridina/metabolismo
8.
Nucleic Acids Symp Ser (Oxf) ; (48): 263-4, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-17150579

RESUMEN

Sequence placement of post-transcriptionally modified nucleosides in tRNA can be experimentally difficult, particularly in cases involving new or unexpected modifications or sequence sites. We describe a mass spectrometry-based approach to this problem, involving the following steps: crude isolations of one or several tRNAs by HPLC from an unfractionated tRNA mixture; digestion to oligonucleotide mixtures by RNase T1; analysis by combined HPLC/electrospray ionization-MS for recognition of modifications; and direct gas-phase sequencing of selected targets in the mixture by LC/MS/MS. Isoacceptor identity can be established in favorable cases when tRNA gene sequences are available.


Asunto(s)
Nucleótidos/análisis , ARN de Transferencia/química , Análisis de Secuencia de ARN/métodos , Cromatografía Líquida de Alta Presión , Espectrometría de Masas , Ribonucleasa T1/metabolismo , Saccharomyces cerevisiae , Sulfolobus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA