Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nature ; 599(7886): 650-656, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34732887

RESUMEN

Loss of functional mitochondrial complex I (MCI) in the dopaminergic neurons of the substantia nigra is a hallmark of Parkinson's disease1. Yet, whether this change contributes to Parkinson's disease pathogenesis is unclear2. Here we used intersectional genetics to disrupt the function of MCI in mouse dopaminergic neurons. Disruption of MCI induced a Warburg-like shift in metabolism that enabled neuronal survival, but triggered a progressive loss of the dopaminergic phenotype that was first evident in nigrostriatal axons. This axonal deficit was accompanied by motor learning and fine motor deficits, but not by clear levodopa-responsive parkinsonism-which emerged only after the later loss of dopamine release in the substantia nigra. Thus, MCI dysfunction alone is sufficient to cause progressive, human-like parkinsonism in which the loss of nigral dopamine release makes a critical contribution to motor dysfunction, contrary to the current Parkinson's disease paradigm3,4.


Asunto(s)
Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Axones/patología , Muerte Celular , Dendritas/metabolismo , Dendritas/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Femenino , Levodopa/farmacología , Levodopa/uso terapéutico , Masculino , Ratones , Destreza Motora/efectos de los fármacos , NADH Deshidrogenasa/deficiencia , NADH Deshidrogenasa/genética , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/fisiopatología , Fenotipo , Sustancia Negra/citología , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo
3.
Nature ; 468(7324): 696-700, 2010 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-21068725

RESUMEN

Parkinson's disease is a pervasive, ageing-related neurodegenerative disease the cardinal motor symptoms of which reflect the loss of a small group of neurons, the dopaminergic neurons in the substantia nigra pars compacta (SNc). Mitochondrial oxidant stress is widely viewed as being responsible for this loss, but why these particular neurons should be stressed is a mystery. Here we show, using transgenic mice that expressed a redox-sensitive variant of green fluorescent protein targeted to the mitochondrial matrix, that the engagement of plasma membrane L-type calcium channels during normal autonomous pacemaking created an oxidant stress that was specific to vulnerable SNc dopaminergic neurons. The oxidant stress engaged defences that induced transient, mild mitochondrial depolarization or uncoupling. The mild uncoupling was not affected by deletion of cyclophilin D, which is a component of the permeability transition pore, but was attenuated by genipin and purine nucleotides, which are antagonists of cloned uncoupling proteins. Knocking out DJ-1 (also known as PARK7 in humans and Park7 in mice), which is a gene associated with an early-onset form of Parkinson's disease, downregulated the expression of two uncoupling proteins (UCP4 (SLC25A27) and UCP5 (SLC25A14)), compromised calcium-induced uncoupling and increased oxidation of matrix proteins specifically in SNc dopaminergic neurons. Because drugs approved for human use can antagonize calcium entry through L-type channels, these results point to a novel neuroprotective strategy for both idiopathic and familial forms of Parkinson's disease.


Asunto(s)
Relojes Biológicos/fisiología , Dopamina/metabolismo , Neuronas/metabolismo , Proteínas Oncogénicas/metabolismo , Estrés Oxidativo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo L/farmacología , Señalización del Calcio , Peptidil-Prolil Isomerasa F , Ciclofilinas/metabolismo , Dihidropiridinas/farmacología , Eliminación de Gen , Canales Iónicos/antagonistas & inhibidores , Canales Iónicos/metabolismo , Glicósidos Iridoides/farmacología , Iridoides , Masculino , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/metabolismo , Neuronas/citología , Proteínas Oncogénicas/deficiencia , Proteínas Oncogénicas/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/prevención & control , Peroxirredoxinas , Proteína Desglicasa DJ-1 , Purinas/farmacología , Superóxidos/metabolismo , Proteína Desacopladora 1
5.
J Neurosci ; 33(24): 10154-64, 2013 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-23761910

RESUMEN

The core motor symptoms of Parkinson's disease (PD) are attributable to the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc). Mitochondrial oxidant stress is widely viewed a major factor in PD pathogenesis. Previous work has shown that activity-dependent calcium entry through L-type channels elevates perinuclear mitochondrial oxidant stress in SNc dopaminergic neurons, providing a potential basis for their selective vulnerability. What is less clear is whether this physiological stress is present in dendrites and if Lewy bodies, the major neuropathological lesion found in PD brains, exacerbate it. To pursue these questions, mesencephalic dopaminergic neurons derived from C57BL/6 transgenic mice were studied in primary cultures, allowing for visualization of soma and dendrites simultaneously. Many of the key features of in vivo adult dopaminergic neurons were recapitulated in vitro. Activity-dependent calcium entry through L-type channels increased mitochondrial oxidant stress in dendrites. This stress progressively increased with distance from the soma. Examination of SNc dopaminergic neurons ex vivo in brain slices verified this pattern. Moreover, the formation of intracellular α-synuclein Lewy-body-like aggregates increased mitochondrial oxidant stress in perinuclear and dendritic compartments. This stress appeared to be extramitochondrial in origin, because scavengers of cytosolic reactive oxygen species or inhibition of NADPH oxidase attenuated it. These results show that physiological and proteostatic stress can be additive in the soma and dendrites of vulnerable dopaminergic neurons, providing new insight into the factors underlying PD pathogenesis.


Asunto(s)
Calcio/metabolismo , Dendritas/metabolismo , Neuronas Dopaminérgicas/citología , Mitocondrias/fisiología , Estrés Oxidativo/fisiología , alfa-Sinucleína/metabolismo , Acetilcisteína/farmacología , Animales , Animales Recién Nacidos , Calbindinas , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Dendritas/ultraestructura , Depuradores de Radicales Libres/farmacología , Proteínas Fluorescentes Verdes , Mesencéfalo/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , NG-Nitroarginina Metil Éster , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Técnicas de Placa-Clamp , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína G de Unión al Calcio S100/genética , Proteína G de Unión al Calcio S100/metabolismo , Estadísticas no Paramétricas , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo , alfa-Sinucleína/farmacología , terc-Butilhidroperóxido/farmacología
6.
Nature ; 447(7148): 1081-6, 2007 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-17558391

RESUMEN

Why dopamine-containing neurons of the brain's substantia nigra pars compacta die in Parkinson's disease has been an enduring mystery. Our studies suggest that the unusual reliance of these neurons on L-type Ca(v)1.3 Ca2+ channels to drive their maintained, rhythmic pacemaking renders them vulnerable to stressors thought to contribute to disease progression. The reliance on these channels increases with age, as juvenile dopamine-containing neurons in the substantia nigra pars compacta use pacemaking mechanisms common to neurons not affected in Parkinson's disease. These mechanisms remain latent in adulthood, and blocking Ca(v)1.3 Ca2+ channels in adult neurons induces a reversion to the juvenile form of pacemaking. Such blocking ('rejuvenation') protects these neurons in both in vitro and in vivo models of Parkinson's disease, pointing to a new strategy that could slow or stop the progression of the disease.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Modelos Animales de Enfermedad , Modelos Neurológicos , Neuronas/citología , Neuronas/patología , Enfermedad de Parkinson/patología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Envejecimiento , Animales , Antiparkinsonianos/farmacología , Calcio/metabolismo , Calcio/farmacología , Canales de Calcio Tipo L/deficiencia , Canales de Calcio Tipo L/genética , Dendritas/metabolismo , Progresión de la Enfermedad , Dopamina/metabolismo , Conductividad Eléctrica , Eliminación de Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/prevención & control , Rotenona/farmacología , Sustancia Negra/citología , Sustancia Negra/metabolismo , Sustancia Negra/patología
7.
Sci Adv ; 8(39): eabp8701, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36179023

RESUMEN

How do neurons match generation of adenosine triphosphate by mitochondria to the bioenergetic demands of regenerative activity? Although the subject of speculation, this coupling is still poorly understood, particularly in neurons that are tonically active. To help fill this gap, pacemaking substantia nigra dopaminergic neurons were studied using a combination of optical, electrophysiological, and molecular approaches. In these neurons, spike-activated calcium (Ca2+) entry through Cav1 channels triggered Ca2+ release from the endoplasmic reticulum, which stimulated mitochondrial oxidative phosphorylation through two complementary Ca2+-dependent mechanisms: one mediated by the mitochondrial uniporter and another by the malate-aspartate shuttle. Disrupting either mechanism impaired the ability of dopaminergic neurons to sustain spike activity. While this feedforward control helps dopaminergic neurons meet the bioenergetic demands associated with sustained spiking, it is also responsible for their elevated oxidant stress and possibly to their decline with aging and disease.


Asunto(s)
Calcio , Neuronas Dopaminérgicas , Adenosina Trifosfato/metabolismo , Ácido Aspártico , Calcio/metabolismo , Neuronas Dopaminérgicas/metabolismo , Malatos/metabolismo , Malatos/farmacología , Mitocondrias/metabolismo , Oxidantes , Sustancia Negra/metabolismo
8.
J Neurosci ; 29(35): 11011-9, 2009 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-19726659

RESUMEN

Dopaminergic neurons of the substantia nigra pars compacta are autonomous pacemakers. This activity is responsible for the sustained release of dopamine necessary for the proper functioning of target structures, such as the striatum. Somatodendritic L-type Ca2+ channels have long been viewed as important, if not necessary, for this activity. The studies reported here challenge this viewpoint. Using a combination of optical and electrophysiological approaches in brain slices, it was found that antagonism of L-type Ca2+ channel effectively stopped dendritic Ca2+ oscillations but left autonomous pacemaking unchanged. Moreover, damping intracellular Ca2+ oscillations with exogenous buffer had little effect on pacemaking rate. Although not necessary for pacemaking, L-type channels helped support pacemaking when challenged with cationic channel blockers. Simulations suggested that the insensitivity to antagonism of L-type channels reflected the multichannel nature of the pacemaking process. The robustness of pacemaking underscores its biological importance and provides a framework for understanding how therapeutics targeting L-type Ca2+ channels might protect dopaminergic neurons in Parkinson's disease without compromising their function.


Asunto(s)
Potenciales de Acción/fisiología , Relojes Biológicos/fisiología , Dopamina/fisiología , Neuronas/fisiología , Sustancia Negra/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
9.
Nat Neurosci ; 9(6): 832-42, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16699510

RESUMEN

Parkinson disease is a neurodegenerative disorder whose symptoms are caused by the loss of dopaminergic neurons innervating the striatum. As striatal dopamine levels fall, striatal acetylcholine release rises, exacerbating motor symptoms. This adaptation is commonly attributed to the loss of interneuronal regulation by inhibitory D(2) dopamine receptors. Our results point to a completely different, new mechanism. After striatal dopamine depletion, D(2) dopamine receptor modulation of calcium (Ca(2+)) channels controlling vesicular acetylcholine release in interneurons was unchanged, but M(4) muscarinic autoreceptor coupling to these same channels was markedly attenuated. This adaptation was attributable to the upregulation of RGS4-an autoreceptor-associated, GTPase-accelerating protein. This specific signaling adaptation extended to a broader loss of autoreceptor control of interneuron spiking. These observations suggest that RGS4-dependent attenuation of interneuronal autoreceptor signaling is a major factor in the elevation of striatal acetylcholine release in Parkinson disease.


Asunto(s)
Acetilcolina/metabolismo , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Interneuronas/metabolismo , Proteínas RGS/metabolismo , Receptor Muscarínico M4/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Autorreceptores/efectos de los fármacos , Autorreceptores/metabolismo , Canales de Calcio/efectos de los fármacos , Canales de Calcio/metabolismo , Comunicación Celular/efectos de los fármacos , Comunicación Celular/fisiología , Cuerpo Estriado/citología , Cuerpo Estriado/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Interneuronas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Agonistas Muscarínicos/farmacología , Oxotremorina/farmacología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/fisiopatología , Proteínas RGS/genética , Ratas , Receptor Muscarínico M4/efectos de los fármacos , Receptores de Dopamina D2/efectos de los fármacos , Receptores de Dopamina D2/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
10.
ACS Chem Biol ; 15(9): 2539-2550, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32881483

RESUMEN

Ca2+ channels with a CaV1.3 pore-forming α1 subunit have been implicated in both neurodegenerative and neuropsychiatric disorders, motivating the development of selective and potent inhibitors of CaV1.3 versus CaV1.2 channels, the calcium channels implicated in hypertensive disorders. We have previously identified pyrimidine-2,4,6-triones (PYTs) that preferentially inhibit CaV1.3 channels, but the structural determinants of their interaction with the channel have not been identified, impeding their development into drugs. By a combination of biochemical, computational, and molecular biological approaches, it was found that PYTs bind to the dihydropyridine (DHP) binding pocket of the CaV1.3 subunit, establishing them as negative allosteric modulators of channel gating. Site-directed mutagenesis, based on homology models of CaV1.3 and CaV1.2 channels, revealed that a single amino acid residue within the DHP binding pocket (M1078) is responsible for the selectivity of PYTs for CaV1.3 over CaV1.2. In addition to providing direction for chemical optimization, these results suggest that, like dihydropyridines, PYTs have pharmacological features that could make them of broad clinical utility.


Asunto(s)
Bloqueadores de los Canales de Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Pirimidinonas/metabolismo , Regulación Alostérica , Sitio Alostérico , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/genética , Neuronas Dopaminérgicas/efectos de los fármacos , Células HEK293 , Humanos , Ratones , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Mutación , Unión Proteica , Conejos , Ratas
11.
Elife ; 82019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-31017573

RESUMEN

Huntington's disease (HD) is initially characterized by an inability to suppress unwanted movements, a deficit attributable to impaired synaptic activation of striatal indirect pathway spiny projection neurons (iSPNs). To better understand the mechanisms underlying this deficit, striatal neurons in ex vivo brain slices from mouse genetic models of HD were studied using electrophysiological, optical and biochemical approaches. Distal dendrites of iSPNs from symptomatic HD mice were hypoexcitable, a change that was attributable to increased association of dendritic Kv4 potassium channels with auxiliary KChIP subunits. This association was negatively modulated by TrkB receptor signaling. Dendritic excitability of HD iSPNs was rescued by knocking-down expression of Kv4 channels, by disrupting KChIP binding, by restoring TrkB receptor signaling or by lowering mutant-Htt (mHtt) levels with a zinc finger protein. Collectively, these studies demonstrate that mHtt induces reversible alterations in the dendritic excitability of iSPNs that could contribute to the motor symptoms of HD.


Asunto(s)
Cuerpo Estriado/patología , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/patología , Enfermedad de Huntington/fisiopatología , Proteínas Mutantes/metabolismo , Neuronas/metabolismo , Canales de Potasio Shal/metabolismo , Animales , Modelos Animales de Enfermedad , Proteína Huntingtina/genética , Ratones , Proteínas Mutantes/genética
12.
Neurochem Res ; 33(8): 1452-8, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18270823

RESUMEN

Medium spiny projection neurons (MSNs) are the main neuronal population in the neostriatum. MSNs are inhibitory and GABAergic. MSNs connect with other MSNs via local axon collaterals that produce lateral inhibition, which is thought to select cell assemblies for motor action. MSNs also receive inhibitory inputs from GABAergic local interneurons. This work shows, through the use of the paired pulse protocol, that somatostatin (SST) acts presynaptically to regulate GABA release from the terminals interconnecting MSNs. This SST action is reversible and not mediated through the release of dopamine. It is blocked by the SST receptor (SSTR) antagonist ciclosomatostatin (cicloSST). In contrast, SST does not regulate inhibition coming from interneurons. Because, SST is released by a class of local interneuron, it is concluded that this neuron helps to regulate the selection of motor acts.


Asunto(s)
Cuerpo Estriado/metabolismo , Potenciales Postsinápticos Inhibidores/fisiología , Neuronas/metabolismo , Terminales Presinápticos/metabolismo , Somatostatina/metabolismo , 6-Ciano 7-nitroquinoxalina 2,3-diona/metabolismo , Potenciales de Acción/fisiología , Animales , Cuerpo Estriado/citología , Agonistas de Aminoácidos Excitadores/metabolismo , Antagonistas de Aminoácidos Excitadores/metabolismo , N-Metilaspartato/metabolismo , Neuronas/citología , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Valina/análogos & derivados , Valina/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo
13.
J Clin Invest ; 128(6): 2266-2280, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29708514

RESUMEN

The ability of the Cav1 channel inhibitor isradipine to slow the loss of substantia nigra pars compacta (SNc) dopaminergic (DA) neurons and the progression of Parkinson's disease (PD) is being tested in a phase 3 human clinical trial. But it is unclear whether and how chronic isradipine treatment will benefit SNc DA neurons in vivo. To pursue this question, isradipine was given systemically to mice at doses that achieved low nanomolar concentrations in plasma, near those achieved in patients. This treatment diminished cytosolic Ca2+ oscillations in SNc DA neurons without altering autonomous spiking or expression of Ca2+ channels, an effect mimicked by selectively knocking down expression of Cav1.3 channel subunits. Treatment also lowered mitochondrial oxidant stress, reduced a high basal rate of mitophagy, and normalized mitochondrial mass - demonstrating that Cav1 channels drive mitochondrial oxidant stress and turnover in vivo. Thus, chronic isradipine treatment remodeled SNc DA neurons in a way that should not only diminish their vulnerability to mitochondrial challenges, but to autophagic stress as well.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Isradipino/farmacología , Mitocondrias/metabolismo , Mitofagia/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Caveolina 1/metabolismo , Neuronas Dopaminérgicas/patología , Humanos , Masculino , Ratones , Mitocondrias/patología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología
14.
Stem Cell Reports ; 9(1): 149-161, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28579395

RESUMEN

A major challenge for clinical application of pluripotent stem cell therapy for Parkinson's disease (PD) is large-scale manufacturing and cryopreservation of neurons that can be efficiently prepared with minimal manipulation. To address this obstacle, midbrain dopamine neurons were derived from human induced pluripotent stem cells (iPSC-mDA) and cryopreserved in large production lots for biochemical and transplantation studies. Cryopreserved, post-mitotic iPSC-mDA neurons retained high viability with gene, protein, and electrophysiological signatures consistent with midbrain floor-plate lineage. To test therapeutic efficacy, cryopreserved iPSC-mDA neurons were transplanted without subculturing into the 6-OHDA-lesioned rat and MPTP-lesioned non-human-primate models of PD. Grafted neurons retained midbrain lineage with extensive fiber innervation in both rodents and monkeys. Behavioral assessment in 6-OHDA-lesioned rats demonstrated significant reversal in functional deficits up to 6 months post transplantation with reinnervation of the host striatum and no aberrant growth, supporting the translational development of pluripotent cell-based therapies in PD.


Asunto(s)
Criopreservación , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/trasplante , Células Madre Pluripotentes Inducidas/citología , Enfermedad de Parkinson/terapia , Animales , Línea Celular , Cuerpo Estriado/citología , Cuerpo Estriado/patología , Criopreservación/métodos , Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Haplorrinos , Humanos , Mesencéfalo/citología , Mesencéfalo/patología , Neurogénesis , Enfermedad de Parkinson/patología , Ratas , Ratas Sprague-Dawley
16.
J Neurosci ; 23(26): 8931-40, 2003 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-14523095

RESUMEN

Dopamine is a critical modulator of striatal function; its absence produces Parkinson's disease. Most cellular actions of dopamine are still unknown. This work describes the presynaptic actions of dopaminergic receptor agonists on GABAergic transmission between neostriatal projection neurons. Axon collaterals interconnect projection neurons, the main axons of which project to other basal ganglia nuclei. Most if not all of these projecting axons pass through the globus pallidus. Thus, we lesioned the intrinsic neurons of the globus pallidus and stimulated neostriatal efferent axons antidromically with a bipolar electrode located in this nucleus. This maneuver revealed a bicuculline-sensitive synaptic current while recording in spiny cells. D1 receptor agonists facilitated whereas D2 receptor agonists depressed this synaptic current. In contrast, a bicuculline-sensitive synaptic current evoked by field stimulation inside the neostriatum was not consistently modulated, in agreement with previous studies. The data are discussed in light of the most recent experimental and modeling results. The conclusion was that inhibition of spiny cells by axon collaterals of other spiny cells is quantitatively important; however, to be functionally important, this inhibition might be conditioned to the synchronized firing of spiny neurons. Finally, dopamine exerts a potentially important role regulating the extent of lateral inhibition.


Asunto(s)
Axones/fisiología , Cuerpo Estriado/fisiología , Dopamina/metabolismo , Neuronas/fisiología , Animales , Axones/efectos de los fármacos , Cuerpo Estriado/citología , Cuerpo Estriado/efectos de los fármacos , Agonistas de Dopamina/farmacología , Estimulación Eléctrica , Antagonistas del GABA/farmacología , Globo Pálido/citología , Globo Pálido/efectos de los fármacos , Globo Pálido/fisiología , Técnicas In Vitro , Neostriado/citología , Neostriado/efectos de los fármacos , Neostriado/fisiología , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Receptores Dopaminérgicos/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo
17.
Nat Neurosci ; 17(6): 832-40, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24816140

RESUMEN

Loss of noradrenergic locus coeruleus (LC) neurons is a prominent feature of aging-related neurodegenerative diseases, such as Parkinson's disease (PD). The basis of this vulnerability is not understood. To explore possible physiological determinants, we studied LC neurons using electrophysiological and optical approaches in ex vivo mouse brain slices. We found that autonomous activity in LC neurons was accompanied by oscillations in dendritic Ca(2+) concentration that were attributable to the opening of L-type Ca(2+) channels. This oscillation elevated mitochondrial oxidant stress and was attenuated by inhibition of nitric oxide synthase. The relationship between activity and stress was malleable, as arousal and carbon dioxide increased the spike rate but differentially affected mitochondrial oxidant stress. Oxidant stress was also increased in an animal model of PD. Thus, our results point to activity-dependent Ca(2+) entry and a resulting mitochondrial oxidant stress as factors contributing to the vulnerability of LC neurons.


Asunto(s)
Dendritas/enzimología , Locus Coeruleus/enzimología , Mitocondrias/enzimología , Óxido Nítrico Sintasa/fisiología , Estrés Oxidativo/fisiología , Animales , Canales de Calcio Tipo L/fisiología , Activación Enzimática/fisiología , Locus Coeruleus/citología , Locus Coeruleus/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo
18.
Cold Spring Harb Perspect Med ; 2(7): a009290, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22762023

RESUMEN

This review will focus on the principles underlying the hypothesis that neuronal physiological phenotype-how a neuron generates and regulates action potentials-makes a significant contribution to its vulnerability in Parkinson's disease (PD) and aging. A cornerstone of this hypothesis is that the maintenance of ionic gradients underlying excitability can pose a significant energetic burden for neurons, particularly those that have sustained residence times at depolarized membrane potentials, broad action potentials, prominent Ca(2+) entry, and modest intrinsic Ca(2+) buffering capacity. This energetic burden is shouldered in neurons primarily by mitochondria, the sites of cellular respiration. Mitochondrial respiration increases the production of damaging superoxide and other reactive oxygen species (ROS) that have widely been postulated to contribute to cellular aging and PD. Many of the genetic mutations and toxins associated with PD compromise mitochondrial function, providing a mechanistic linkage between known risk factors and cellular physiology that could explain the pattern of pathology in PD. Because much of the mitochondrial burden created by this at-risk phenotype is created by Ca(2+) entry through L-type voltage-dependent channels for which there are antagonists approved for human use, a neuroprotective strategy to reduce this burden is feasible.


Asunto(s)
Potenciales de Acción , Susceptibilidad a Enfermedades/fisiopatología , Mitocondrias/metabolismo , Neuronas/fisiología , Enfermedad de Parkinson/fisiopatología , Sustancia Negra/fisiopatología , Envejecimiento/fisiología , Animales , Canales de Calcio Tipo L/fisiología , ADN Mitocondrial , Dihidropiridinas/uso terapéutico , Dopamina/biosíntesis , Metabolismo Energético , Humanos , Iones , Mitocondrias/genética , Neuronas/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Eliminación de Secuencia , Sustancia Negra/metabolismo
19.
Nat Neurosci ; 15(10): 1414-21, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22941107

RESUMEN

Mitochondrial oxidant stress is widely viewed as being critical to pathogenesis in Parkinson's disease. But the origins of this stress are poorly defined. One possibility is that it arises from the metabolic demands associated with regenerative activity. To test this hypothesis, we characterized neurons in the dorsal motor nucleus of the vagus (DMV), a population of cholinergic neurons that show signs of pathology in the early stages of Parkinson's disease, in mouse brain slices. DMV neurons were slow, autonomous pacemakers with broad spikes, leading to calcium entry that was weakly buffered. Using a transgenic mouse expressing a redox-sensitive optical probe targeted to the mitochondrial matrix, we found that calcium entry during pacemaking created a basal mitochondrial oxidant stress. Knocking out DJ-1 (also known as PARK7), a gene associated with early-onset Parkinson's disease, exacerbated this stress. These results point to a common mechanism underlying mitochondrial oxidant stress in Parkinson's disease and a therapeutic strategy to ameliorate it.


Asunto(s)
Calcio/efectos adversos , Calcio/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo/fisiología , Enfermedad de Parkinson/etiología , Nervio Vago/metabolismo , Animales , Relojes Biológicos/genética , Relojes Biológicos/fisiología , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Estrés Oxidativo/genética , Peroxirredoxinas , Proteína Desglicasa DJ-1 , Nervio Vago/fisiología
20.
Antioxid Redox Signal ; 14(7): 1289-301, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20712409

RESUMEN

Parkinson's disease (PD) is a major world-wide health problem afflicting millions of the aged population. Factors that act on most or all cell types (pan-cellular factors), particularly genetic mutations and environmental toxins, have dominated public discussions of disease etiology. Although there is compelling evidence supporting an association between disease risk and these factors, the pattern of neuronal pathology and cell loss is difficult to explain without cell-specific factors. This article focuses on recent studies showing that the neurons at greatest risk in PD-substantia nigra pars compacta dopamine neurons-have a distinctive physiological phenotype that could contribute to their vulnerability. The opening of L-type calcium channels during autonomous pacemaking results in sustained calcium entry into the cytoplasm of substantia nigra pars compacta dopamine neurons, resulting in elevated mitochondrial oxidant stress and susceptibility to toxins used to create animal models of PD. This cell-specific stress could increase the negative consequences of pan-cellular factors that broadly challenge either mitochondrial or proteostatic competence. The availability of well-tolerated, orally deliverable antagonists for L-type calcium channels points to a novel neuroprotective strategy that could complement current attempts to boost mitochondrial function in the early stages of the disease.


Asunto(s)
Estrés Oxidativo , Enfermedad de Parkinson/metabolismo , Envejecimiento , Animales , Relojes Biológicos , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio , Muerte Celular , Humanos , Isradipino/farmacología , Locus Coeruleus/metabolismo , Locus Coeruleus/patología , Mitocondrias/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Especies Reactivas de Oxígeno/metabolismo , Factores de Riesgo , Sustancia Negra/metabolismo , Sustancia Negra/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA