Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Circulation ; 146(5): 412-426, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35862076

RESUMEN

BACKGROUND: The human heart has limited capacity to generate new cardiomyocytes and this capacity declines with age. Because loss of cardiomyocytes may contribute to heart failure, it is crucial to explore stimuli of endogenous cardiac regeneration to favorably shift the balance between loss of cardiomyocytes and the birth of new cardiomyocytes in the aged heart. We have previously shown that cardiomyogenesis can be activated by exercise in the young adult mouse heart. Whether exercise also induces cardiomyogenesis in aged hearts, however, is still unknown. Here, we aim to investigate the effect of exercise on the generation of new cardiomyocytes in the aged heart. METHODS: Aged (20-month-old) mice were subjected to an 8-week voluntary running protocol, and age-matched sedentary animals served as controls. Cardiomyogenesis in aged hearts was assessed on the basis of 15N-thymidine incorporation and multi-isotope imaging mass spectrometry. We analyzed 1793 cardiomyocytes from 5 aged sedentary mice and compared these with 2002 cardiomyocytes from 5 aged exercised mice, followed by advanced histology and imaging to account for ploidy and nucleation status of the cell. RNA sequencing and subsequent bioinformatic analyses were performed to investigate transcriptional changes induced by exercise specifically in aged hearts in comparison with young hearts. RESULTS: Cardiomyogenesis was observed at a significantly higher frequency in exercised compared with sedentary aged hearts on the basis of the detection of mononucleated/diploid 15N-thymidine-labeled cardiomyocytes. No mononucleated/diploid 15N-thymidine-labeled cardiomyocyte was detected in sedentary aged mice. The annual rate of mononucleated/diploid 15N-thymidine-labeled cardiomyocytes in aged exercised mice was 2.3% per year. This compares with our previously reported annual rate of 7.5% in young exercised mice and 1.63% in young sedentary mice. Transcriptional profiling of young and aged exercised murine hearts and their sedentary controls revealed that exercise induces pathways related to circadian rhythm, irrespective of age. One known oscillating transcript, however, that was exclusively upregulated in aged exercised hearts, was isoform 1.4 of regulator of calcineurin, whose regulation and functional role were explored further. CONCLUSIONS: Our data demonstrate that voluntary running in part restores cardiomyogenesis in aged mice and suggest that pathways associated with circadian rhythm may play a role in physiologically stimulated cardiomyogenesis.


Asunto(s)
Miocitos Cardíacos , Condicionamiento Físico Animal , Animales , Calcineurina/metabolismo , Humanos , Lactante , Ratones , Miocitos Cardíacos/citología , Timidina/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(4): 1884-1889, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31932423

RESUMEN

We determined interstellar cosmic ray exposure ages of 40 large presolar silicon carbide grains extracted from the Murchison CM2 meteorite. Our ages, based on cosmogenic Ne-21, range from 3.9 ± 1.6 Ma to ∼3 ± 2 Ga before the start of the Solar System ∼4.6 Ga ago. A majority of the grains have interstellar lifetimes of <300 Ma, which is shorter than theoretical estimates for large grains. These grains condensed in outflows of asymptotic giant branch stars <4.9 Ga ago that possibly formed during an episode of enhanced star formation ∼7 Ga ago. A minority of the grains have ages >1 Ga. Longer lifetimes are expected for large grains. We determined that at least 12 of the analyzed grains were parts of aggregates in the interstellar medium: The large difference in nuclear recoil loss of cosmic ray spallation products 3He and 21Ne enabled us to estimate that the irradiated objects in the interstellar medium were up to 30 times larger than the analyzed grains. Furthermore, we estimate that the majority of the grains acquired the bulk of their cosmogenic nuclides in the interstellar medium and not by exposure to an enhanced particle flux of the early active sun.

3.
J Anal At Spectrom ; 34(8): 1534-1545, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34054180

RESUMEN

Investigation of biological processes at the single cell or subcellular level is critical in order to better understand heterogenous cell populations. Nanoscale secondary ion mass spectrometry (NanoSIMS) enables multiplexed, quantitative imaging of the elemental composition of a sample surface at high resolution (< 50 nm). Through measurement of two different isotopic variants of any given element, NanoSIMS provides nanoscale isotope ratio measurements. When coupled with stable isotope tracer methods, the measurement of isotope ratios functionally illuminates biochemical pathways at suborganelle resolution. In this review, we describe the practical application of NanoSIMS to study biological processes in organisms ranging from microbes to humans, highlighting experimental applications that have provided insight that is largely unattainable by other methods.

4.
Meteorit Planet Sci ; 53(11): 2327-2342, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30846899

RESUMEN

We present He and Ne isotopes of individual presolar graphite grains from a low-density separate from Orgueil. Two grain mounts were analyzed with the same techniques but in a different sequence: The first one was measured with NanoSIMS followed by noble gas mass spectrometry, and the second one in reverse order. No grain contained 4He and only one grain on the second mount contained 3He. On the first mount, the grains had been extensively sputtered with NanoSIMS ion beams prior to noble gas analysis; we found only one grain out of 15 with presolar 22Ne above detection limit. In contrast, we found presolar 22Ne in six out of seven grains on the second mount that was not exposed to an ion beam prior to noble gas analysis. All 22 grains on the two mounts were imaged with scanning electron microscopy (SEM) and/or Auger microscopy. We present evidence that this contrasting observation is most likely due to e-beam-induced heating of the generally smaller grains on the first mount during SEM and Auger imaging, and not primarily due to the NanoSIMS analysis. If thermal contact of the grains to the substrate is absent, such that heat can only be dissipated via radiation, then the smaller, sputter-eroded grains are heated to higher temperatures such that noble gases can diffuse out. We discuss possible gas loss mechanisms and suggest solutions to reduce heating during e-beam analyses by minimizing voltages, beam currents, and dwell times. We also found small amounts of 21Ne in five grains. Using isotope data we determined that the dominant sources of most grains are core-collapse supernovae, congruent with earlier studies of low-density presolar graphite from Murchison. Only two of the grains are most likely from AGB stars, and two others have an ambiguous origin.

5.
Methods Mol Biol ; 2158: 257-268, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32857379

RESUMEN

The quantification of cell cycle activity is a prerequisite to defining the dynamics and scope of organ development or regeneration. Multi-isotope imaging mass spectrometry (MIMS) merges stable isotope tracers with an imaging mass spectrometry platform called NanoSIMS, which can quantitatively measure the incorporation of stable isotope tracers with high precision in suborganelle domains. MIMS has been applied to quantify the dynamics of postnatal cardiogenesis and mammalian cardiomyocyte regeneration during aging or in response to injury. Here, we present an approach to the conduct of MIMS experiments, with an emphasis on the application to the field of cardiac regeneration; however, the approach is also applicable, with, at most, minor modifications to broader biological questions.


Asunto(s)
Ciclo Celular , Diagnóstico por Imagen/métodos , Marcaje Isotópico/métodos , Espectrometría de Masas/métodos , Miocitos Cardíacos/fisiología , Regeneración , Animales , División Celular , Ratones , Miocitos Cardíacos/citología
6.
Nat Protoc ; 16(4): 1995-2022, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33627842

RESUMEN

Quantification of cellular proliferation in humans is important for understanding biology and responses to injury and disease. However, existing methods require administration of tracers that cannot be ethically administered in humans. We present a protocol for the direct quantification of cellular proliferation in human hearts. The protocol involves administration of non-radioactive, non-toxic stable isotope 15Nitrogen-enriched thymidine (15N-thymidine), which is incorporated into DNA during S-phase, in infants with tetralogy of Fallot, a common form of congenital heart disease. Infants with tetralogy of Fallot undergo surgical repair, which requires the removal of pieces of myocardium that would otherwise be discarded. This protocol allows for the quantification of cardiomyocyte proliferation in this discarded tissue. We quantitatively analyzed the incorporation of 15N-thymidine with multi-isotope imaging spectrometry (MIMS) at a sub-nuclear resolution, which we combined with correlative confocal microscopy to quantify formation of binucleated cardiomyocytes and cardiomyocytes with polyploid nuclei. The entire protocol spans 3-8 months, which is dependent on the timing of surgical repair, and 3-4.5 researcher days. This protocol could be adapted to study cellular proliferation in a variety of human tissues.


Asunto(s)
División Celular , Marcaje Isotópico/métodos , Espectrometría de Masas/métodos , Miocitos Cardíacos/citología , Timidina/metabolismo , Núcleo Celular/metabolismo , Proliferación Celular , Femenino , Feto/citología , Humanos , Imagenología Tridimensional , Lactante , Leucocitos/citología , Miocardio/citología , Isótopos de Nitrógeno/orina , Ploidias , Embarazo , Sarcómeros/metabolismo , Tetralogía de Fallot/patología
7.
Int J Cardiol ; 339: 36-42, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34265312

RESUMEN

BACKGROUND: Patients with Tetralogy of Fallot with pulmonary stenosis (ToF/PS), the most common form of cyanotic congenital heart disease (CHD), develop adverse right ventricular (RV) remodeling, leading to late heart failure and arrhythmia. We recently demonstrated that overactive ß-adrenergic receptor signaling inhibits cardiomyocyte division in ToF/PS infants, providing a conceptual basis for the hypothesis that treatment with the ß-adrenergic receptor blocker, propranolol, early in life would increase cardiomyocyte division. No data are available in ToF/PS infants on the efficacy of propranolol as a possible novel therapeutic option to increase cardiomyocyte division and potentially reduce adverse RV remodeling. METHODS: Using a randomized, double-blind, placebo-controlled trial, we will evaluate the effect of propranolol administration on reactivating cardiomyocyte proliferation to prevent adverse RV remodeling in 40 infants with ToF/PS. Propranolol administration (1 mg/kg po QID) will begin at 1 month of age and last until surgical repair. The primary endpoint is cardiomyocyte division, quantified after 15N-thymidine administration with Multi-isotope Imaging Mass Spectrometry (MIMS) analysis of resected myocardial specimens. The secondary endpoints are changes in RV myocardial and cardiomyocyte hypertrophy. CONCLUSION: This trial will be the first study in humans to assess whether cardiomyocyte proliferation can be pharmacologically increased. If successful, the results could introduce a paradigm shift in the management of patients with ToF/PS from a purely surgical approach, to synergistic medical and surgical management. It will provide the basis for future multi-center randomized controlled trials of propranolol administration in infants with ToF/PS and other types of CHD with RV hypertension. CLINICAL TRIAL REGISTRATION: The trial protocol was registered at clinicaltrials.gov (NCT04713657).


Asunto(s)
Estenosis de la Válvula Pulmonar , Tetralogía de Fallot , Humanos , Lactante , Miocitos Cardíacos , Ensayos Clínicos Controlados Aleatorios como Asunto , Receptores Adrenérgicos beta 2 , Tetralogía de Fallot/diagnóstico por imagen , Tetralogía de Fallot/cirugía , Remodelación Ventricular
8.
J Cell Biol ; 219(1)2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31719114

RESUMEN

Quantification of stable isotope tracers after metabolic labeling provides a snapshot of the dynamic state of living cells and tissue. A form of imaging mass spectrometry quantifies isotope ratios with a lateral resolution <50 nm, using a methodology that we refer to as multi-isotope imaging mass spectrometry (MIMS). Despite lateral resolution exceeding diffraction-limited light microscopy, lack of contrast has largely limited use of MIMS to large or specialized subcellular structures, such as the nucleus and stereocilia. In this study, we repurpose the engineered peroxidase APEX2 as the first genetically encoded marker for MIMS. Coupling APEX2 labeling of lysosomes and metabolic labeling of protein, we identify that individual lysosomes exhibit substantial heterogeneity in protein age, which is lost in iPSC-derived neurons lacking the lysosomal protein progranulin. This study expands the practical use of MIMS for cell biology by enabling measurements of metabolic function from stable isotope labeling within individual organelles in situ.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Marcaje Isotópico/métodos , Lisosomas/metabolismo , Espectrometría de Masas/métodos , Neuronas/metabolismo , Orgánulos/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/análisis , Células HeLa , Humanos , Células Madre Pluripotentes Inducidas/citología , Neuronas/citología , Proteolisis
9.
Front Neurol ; 9: 169, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29623063

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder with clinical manifestations of progressive memory decline and loss of executive function and language. AD affects an estimated 5.3 million Americans alone and is the most common form of age-related dementia with a rapidly growing prevalence among the aging population-those 65 years of age or older. AD is characterized by accumulation of aggregated amyloid-beta (Aß) in the brain, which leads to one of the pathological hallmarks of AD-Aß plaques. As a result, Aß plaques have been extensively studied after being first described over a century ago. Advances in brain imaging and quantitative measures of Aß in biological fluids have yielded insight into the time course of plaque development decades before and after AD symptom onset. However, despite the fundamental role of Aß plaques in AD, in vivo measures of individual plaque growth, growth distribution, and dynamics are still lacking. To address this question, we combined stable isotope labeling kinetics (SILK) and nanoscale secondary ion mass spectrometry (NanoSIMS) imaging in an approach termed SILK-SIMS to resolve plaque dynamics in three human AD brains. In human AD brain, plaques exhibit incorporation of a stable isotope tracer. Tracer enrichment was highly variable between plaques and the spatial distribution asymmetric with both quiescent and active nanometer sub-regions of tracer incorporation. These data reveal that Aß plaques are dynamic structures with deposition rates over days indicating a highly active process. Here, we report the first, direct quantitative measures of in vivo deposition into plaques in human AD brain. Our SILK-SIMS studies will provide invaluable information on plaque dynamics in the normal and diseased brain and offer many new avenues for investigation into pathological mechanisms of the disease, with implications for therapeutic development.

10.
Astrophys J ; 8252016.
Artículo en Inglés | MEDLINE | ID: mdl-30705444

RESUMEN

Presolar grains constitute the remnants of stars that existed before the formation of the solar system. In addition to providing direct information on the materials from which the solar system formed, these grains provide ground-truth information for models of stellar evolution and nucleosynthesis. Here we report the in situ identification of two unique presolar graphite grains from the primitive meteorite LaPaz Icefield 031117. Based on these two graphite grains, we estimate a bulk presolar graphite abundance of 5 - 3 + 7 ppm in this meteorite. One of the grains (LAP-141) is characterized by an enrichment in 12C and depletions in 33,34S, and contains a small iron sulfide subgrain, representing the first unambiguous identification of presolar iron sulfide. The other grain (LAP-149) is extremely 13C-rich and 15N-poor, with one of the lowest 12C/13C ratios observed among presolar grains. Comparison of its isotopic compositions with new stellar nucleosynthesis and dust condensation models indicates an origin in the ejecta of a low-mass CO nova. Grain LAP-149 is the first putative nova grain that quantitatively best matches nova model predictions, providing the first strong evidence for graphite condensation in nova ejecta. Our discovery confirms that CO nova graphite and presolar iron sulfide contributed to the original building blocks of the solar system.

11.
Science ; 332(6035): 1304-7, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21659601

RESUMEN

The complex suite of organic materials in carbonaceous chondrite meteorites probably originally formed in the interstellar medium and/or the solar protoplanetary disk, but was subsequently modified in the meteorites' asteroidal parent bodies. The mechanisms of formation and modification are still very poorly understood. We carried out a systematic study of variations in the mineralogy, petrology, and soluble and insoluble organic matter in distinct fragments of the Tagish Lake meteorite. The variations correlate with indicators of parent body aqueous alteration. At least some molecules of prebiotic importance formed during the alteration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA