RESUMEN
BACKGROUND: Binding IgE to a cognate allergen causes aggregation of Fcε receptor I (FcεRI) in mast cells, resulting in activation of receptor-associated Src family tyrosine kinases, including Lyn and Syk. Protein tyrosine phosphatase, receptor type C (PTPRC), also known as CD45, has emerged as a positive regulator of FcεRI signaling by dephosphorylation of the inhibitory tyrosine of Lyn. OBJECTIVE: Sirtuin 6 (Sirt6), a NAD+-dependent deacetylase, exhibits an anti-inflammatory property. It remains to be determined, however, whether Sirt6 attenuates mast cell-associated diseases, including anaphylaxis. METHODS: FcεRI signaling and mast cell degranulation were measured after IgE cross-linking in murine bone marrow-derived mast cells (BMMCs) and human cord blood-derived mast cells. To investigate the function of Sirt6 in mast cell activation in vivo, we used mast cell-dependent animal models of passive systemic anaphylaxis (PSA) and passive cutaneous anaphylaxis (PCA). RESULTS: Sirt6-deficient BMMCs augmented IgE-FcεRI-mediated signaling and degranulation compared to wild-type BMMCs. Reconstitution of mast cell-deficient KitW-sh/W-sh mice with BMMCs received from Sirt6 knockout mice developed more severe PSA and PCA compared to mice engrafted with wild-type BMMCs. Similarly, genetic overexpression or pharmacologic activation of Sirt6 suppressed mast cell degranulation and blunted responses to PCA. Mechanistically, Sirt6 deficiency increased PTPRC transcription via acetylating histone H3, leading to enhanced aggregation of FcεRI in BMMCs. Finally, we recapitulated the Sirt6 regulation of PTPRC and FcεRI signaling in human mast cells. CONCLUSIONS: Sirt6 acts as a negative regulator of FcεRI signaling cascade in mast cells by suppressing PTPRC transcription. Activation of Sirt6 may therefore represent a promising and novel therapeutic strategy for anaphylaxis.
Asunto(s)
Anafilaxia/inmunología , Mastocitos/inmunología , Receptores de IgE/inmunología , Sirtuinas/inmunología , Animales , Células de la Médula Ósea/citología , Sangre Fetal/citología , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal , Sirtuinas/genéticaRESUMEN
Allergic contact dermatitis (ACD) is the most common chronic inflammatory skin disease (or immune-mediated disease), causing disruption to our psychological condition and life quality. In this study, the therapeutic properties of probiotic Bifidobacterium longum (B. longum) was investigated by using an ACD-induced animal model. For ACD induction, BALB/c mice ear and dorsal skin were sensitized with 240 µL of 1% (w/v) 2,4-dinitrochlorobenzene (DNCB) twice (3-day intervals). After a week of the first induction, the mice were re-sensitized by painting on their dorsal skin and ear with 0.4% (w/v) DNCB for a further three times (once per week). Before the ACD induction of 2 weeks and throughout the trial period, the BALB/c mice were supplemented daily with 1 mL of 1.0 × 109 CFU or 5.0 × 109 CFU B. longum using an intragastric gavage method. The ACD-induced mice without B. longum supplementation were used as a control. Results show that B. longum supplementation significantly alleviated ACD symptoms (e.g., ear swelling, epidermal damage) and immune response (e.g., reduced immune cell recruitment, serum IgE level, and cytokine production). The therapeutic efficiency of B. longum increased as the supplementation dose increased. Thus, daily supplementation with 5.0 × 109 CFU probiotic B. longum could be an effective method for the prevention and treatment of ACD.