Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-26654204

RESUMEN

This article reports on the ability of yeast Trichosporon asahii B1 biofilm-associated cells, compared with that of planktonic cells, to transform sec-hexylbenzene and its metabolites. This B1 strain was isolated from a petroleum-polluted sediment collected in the QuangNinh coastal zones in Vietnam, and it can transform the branched aromatic hydrocarbons into a type of forming biofilm (pellicle) more efficiency than that the planktonic forms can. In the biofilm cultivation, seven metabolites, including acetophenone, benzoic acid, 2,3-dihydroxybenzoic acid, ß-methylcinnamic acid, 2-phenylpropionic acid, 3-phenylbutyric acid, and 5-phenylhexanoic acid were extracted by ethyl acetate and analyzed by HPLC and GC-MS. In contrast, in the planktonic cultivation, only three of these intermediates were found. An individual metabolite was independently used as an initial substrate to prove its degradation by biofilm and planktonic types. The degradation of these products indicated that their inoculation with B1 biofilms was indeed higher than that observed in their inoculation with B1 planktonic cells. This is the first report on the degradation of sec-hexylbenzene and its metabolites by a biofilm-forming Trichosporon asahii strain. These results enhance our understanding of the degradation of branched-side-chain alkylbenzenes by T. asahii B1 biofilms and give a new insight into the potential role of biofilms formed by such species in the bioremediation of other recalcitrant aromatic compounds.


Asunto(s)
Sedimentos Geológicos/microbiología , Hidrocarburos Aromáticos/metabolismo , Trichosporon/aislamiento & purificación , Trichosporon/metabolismo , Biodegradación Ambiental , Biopelículas , Cromatografía de Gases y Espectrometría de Masas , Hidrocarburos Aromáticos/química , Contaminación por Petróleo , Trichosporon/clasificación , Trichosporon/genética , Vietnam
2.
Chemosphere ; 278: 130464, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33845437

RESUMEN

Oil pollution which results from industrial activities, especially oil and gas industry, has become a serious issue. Cinder beats (CB), coconut fiber (CF) and polyurethane foam (PUF) are promising immobilization carriers for crude oil biodegradation because they are inexpensive, nontoxic, and non-polluting. The present investigation was aimed to evaluate this advanced technology and compare the efficiency of these immobilization carriers on supporting purple phototrophic bacterial (PPB) strains in hydrocarbon biodegradation of crude oil contaminated seawater. The surface of these biocarriers was supplemented with crude oil polluted seawater and immobilized by PPB strains, Rhodopseudomonas sp. DD4, DQ41 and FO2. Through scanning electron microscopy (SEM), the bacterial cells were shown to colonize and attach strongly to these biocarriers. The bacteria-driven carrier systems degraded over 84.2% supplemented single polycyclic aromatic hydrocarbons (PAHs). The aliphatic and aromatic components in crude oil that treated with carrier-immobilized consortia were degraded remarkably after 14 day-incubation. Among the three biocarriers, removal of the crude oil by CF-bacteria system was the highest (nearly 100%), followed by PUF-bacteria (89.5%) and CB-bacteria (86.3%) with the initial crude oil concentration was 20 g/L. Efficiency of crude oil removal by CB-bacteria and PUF-bacteria were 86.3 and 89.5%, respectively. Till now, the studies on crude oil degradation by mixture species biofilms formed by PPB on different carriers are limited. The present study showed that the biocarriers of an oil-degrading consortium could be made up of waste materials that are cheap and eco-friendly as well as augment the biodegradation of oil-contaminated seawater.


Asunto(s)
Contaminación por Petróleo , Petróleo , Biodegradación Ambiental , Petróleo/análisis , Contaminación por Petróleo/análisis , Proteobacteria , Aguas Residuales
3.
Appl Biochem Biotechnol ; 191(1): 313-330, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31853877

RESUMEN

Oil pollution in marine environment caused by oil spillage has been a main threat to the ecosystem including the ocean life and to the human being. In this research, three indigenous purple photosynthetic strains Rhodopseudomonas sp. DD4, DQ41, and FO2 were isolated from oil-contaminated coastal zones in Vietnam. The cells of these strains were immobilized on different carriers including cinder beads (CB), coconut fiber (CF), and polyurethane foam (PUF) for diesel oil removal from artificial seawater. The mixed biofilm formed by using CB, CF, and PUF as immobilization supports degraded 90, 91, and 95% of diesel oil (DO) with the initial concentration of 17.2 g/L, respectively, after 14 days of incubation. The adsorption of DO on different systems was accountable for the removal of 12-16% hydrocarbons for different carriers. To the best of our knowledge, this is the first report on diesel oil degradation by purple photosynthetic bacterial biofilms on different carriers. Moreover, using carriers attaching purple photosynthetic bacteria to remove diesel oil in large scale is considered as an essential method for the improvement of a cost-effective and efficient bioremediation manner. This study can be a promising approach to eliminate DO from oil-contaminated seawater.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Células Inmovilizadas/fisiología , Gasolina/microbiología , Rhodopseudomonas/fisiología , Biodegradación Ambiental , Vietnam
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA