Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 139(33): 11568-11575, 2017 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-28756661

RESUMEN

Size-selected supported clusters of transition metals can be remarkable and highly tunable catalysts. A particular example is Pt clusters deposited on alumina, which have been shown to dehydrogenate hydrocarbons in a size-specific manner. Pt7, of the three sizes studied, is the most active and, therefore, like many other catalysts, deactivates by coking during reactions in hydrocarbon-rich environments. Using a combination of experiment and theory, we show that nanoalloying Pt7 with boron modifies the alkene-binding affinity to reduce coking. From a fundamental perspective, the comparison of experimental and theoretical results shows the importance of considering not simply the most stable cluster isomer, but rather the ensemble of accessible structures as it changes in response to temperature and reagent coverage.

2.
Nano Lett ; 15(9): 6177-81, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26267352

RESUMEN

Here, we report photocatalytic CO2 reduction with water to produce methanol using TiO2-passivated InP nanopillar photocathodes under 532 nm wavelength illumination. In addition to providing a stable photocatalytic surface, the TiO2-passivation layer provides substantial enhancement in the photoconversion efficiency through the introduction of O vacancies associated with the nonstoichiometric growth of TiO2 by atomic layer deposition. Plane wave-density functional theory (PW-DFT) calculations confirm the role of oxygen vacancies in the TiO2 surface, which serve as catalytically active sites in the CO2 reduction process. PW-DFT shows that CO2 binds stably to these oxygen vacancies and CO2 gains an electron (-0.897e) spontaneously from the TiO2 support. This calculation indicates that the O vacancies provide active sites for CO2 absorption, and no overpotential is required to form the CO2(-) intermediate. The TiO2 film increases the Faraday efficiency of methanol production by 5.7× to 4.79% under an applied potential of -0.6 V vs NHE, which is 1.3 V below the E(o)(CO2/CO2(-)) = -1.9 eV standard redox potential. Copper nanoparticles deposited on the TiO2 act as a cocatalyst and further improve the selectivity and yield of methanol production by up to 8-fold with a Faraday efficiency of 8.7%.

4.
ACS Catal ; 10(17): 9953-9966, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-38435051

RESUMEN

Platinum-nickel (Pt-Ni) nanowires were developed as hydrogen evolving catalysts for anion exchange membrane electrolyzers. Following synthesis by galvanic displacement, the nanowires had Pt surface areas of 90 m2 gPt-1. The nanowire specific exchange current densities were 2-3 times greater than commercial nanoparticles and may benefit from the extended nanostructure morphology that avoids fringe facets and produces higher quantities of Pt{100}. Hydrogen annealing was used to alloy Pt and Ni zones and compress the Pt lattice. Following annealing, the nanowire activity improved to 4 times greater than the as-synthesized wires and 10 times greater than Pt nanoparticles. Density functional theory calculations were performed to investigate the influence of lattice compression and exposed facet on the water-splitting reaction; it was found that at a lattice of 3.77 Å, the (100) facet of a Pt-skin grown on Ni3Pt weakens hydrogen binding and lowers the barrier to water-splitting as compared to pure Pt(100). Moreover, the activation energy of water-splitting on the (100) facet of a Pt-skin grown on Ni3Pt is particularly advantageous at 0.66 eV as compared to the considerably higher 0.90 eV required on (111) surfaces of pure Pt or Pt-skin grown on Ni3Pt. This favorable effect may be slightly mitigated during further optimization procedures such as acid leaching near-surface Ni, necessary to incorporate the nanowires into electrolyzer membrane electrode assemblies. Exposure to acid resulted in slight dealloying and Pt lattice expansion, which reduced half-cell activity, but exposed Pt surfaces and improved single-cell performance. Membrane electrode assembly performance was kinetically 1-2 orders of magnitude greater than Ni and slightly better than Pt nanoparticles while at one tenth the Pt loading. These electrocatalysts potentially exploit the highly active {100} facets and provide an ultralow Pt group metal option that can enable anion exchange membrane electrolysis, bridging the gap to proton exchange membrane-based systems.

5.
Sci Rep ; 9(1): 15906, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31685891

RESUMEN

We report the ability to tune the catalytic activities for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) by applying mechanical stress on a highly n-type doped rutile TiO2 films. We demonstrate through operando electrochemical experiments that the low HER activity of TiO2 can reversibly approach those of the state-of-the-art non-precious metal catalysts when the TiO2 is under tensile strain. At 3% tensile strain, the HER overpotential required to generate a current density of 1 mA/cm2 shifts anodically by 260 mV to give an onset potential of 125 mV, representing a drastic reduction in the kinetic overpotential. A similar albeit smaller cathodic shift in the OER overpotential is observed when tensile strain is applied to TiO2. Results suggest that significant improvements in HER and OER activities with tensile strain are due to an increase in concentration of surface active sites and a decrease in kinetic and thermodynamics barriers along the reaction pathway(s). Our results highlight that strain applied to TiO2 by precisely controlled and incrementally increasing (i.e. dynamic) tensile stress is an effective tool for dynamically tuning the electrocatalytic properties of HER and OER electrocatalysts relative to their activities under static conditions.

6.
ACS Appl Mater Interfaces ; 11(10): 10351-10355, 2019 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-30768239

RESUMEN

It has been known for several decades that defects are largely responsible for the catalytically active sites on metal and semiconductor surfaces. However, it is difficult to directly probe these active sites because the defects associated with them are often relatively rare with respect to the stoichiometric crystalline surface. In the work presented here, we demonstrate a method to selectively probe defect-mediated photocatalysis through differential alternating current (ac) photocurrent (PC) measurements. In this approach, electrons are photoexcited from the valence band to a relatively narrow distribution of subband gap states in TiO2 and then subsequently to the ions in solution. Because of their limited number, these defect states fill up quickly, resulting in Pauli blocking, and are thereby undetectable under direct current or continuous wave excitation. In the method demonstrated here, the incident light is modulated with an optical chopper, whereas the PC is measured with a lock-in amplifier. Thin (5 nm) films of TiO2 deposited by atomic layer deposition on various metal films, including Au, Cu, and Al, exhibit the same wavelength-dependent PC spectra, with a broad peak centered around 2.0 eV corresponding to the band-to-defect transition associated with the hydrogen evolution reaction (HER). While the UV-vis absorption spectra of these films show no features at 2.0 eV, photoluminescence (PL) spectra of these photoelectrodes show a similar wavelength dependence with a peak of around 2.0 eV, corresponding to the subband gap emission associated with these defect sites. As a control, alumina (Al2O3) films exhibit no PL or PC over the visible wavelength range. The ac PC plotted as a function of electrode potential shows a peak of around -0.4 to -0.1 V versus normal hydrogen electrode, as the monoenergetic defect states are tuned through a resonance with the HER potential. This approach enables the direct photoexcitation of catalytically active defect sites to be studied selectively without the interference of the continuum interband transitions or the effects of Pauli blocking, which is limited by the slow turnover time of the catalytically active sites, typically on the order of 1 µs. We believe that this general approach provides an important new way to study the role of defects in catalysis in an area where selective spectroscopic studies of these are few.

7.
ACS Omega ; 2(4): 1408-1418, 2017 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31457512

RESUMEN

For the first time, extended nanostructured catalysts are demonstrated with both high specific activity (>6000 µA cmPt -2 at 0.9 V) and high surface areas (>90 m2 gPt -1). Platinum-nickel (Pt-Ni) nanowires, synthesized by galvanic displacement, have previously produced surface areas in excess of 90 m2 gPt -1, a significant breakthrough in and of itself for extended surface catalysts. Unfortunately, these materials were limited in terms of their specific activity and durability upon exposure to relevant electrochemical test conditions. Through a series of optimized postsynthesis steps, significant improvements were made to the activity (3-fold increase in specific activity), durability (21% mass activity loss reduced to 3%), and Ni leaching (reduced from 7 to 0.3%) of the Pt-Ni nanowires. These materials show more than a 10-fold improvement in mass activity compared to that of traditional carbon-supported Pt nanoparticle catalysts and offer significant promise as a new class of electrocatalysts in fuel cell applications.

8.
J Chem Theory Comput ; 12(6): 2889-95, 2016 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-27163165

RESUMEN

We present a systematic investigation of the influence of theoretical parameters on the characterization of surface and subsurface oxygen vacancies in anatase with the 101 facet exposed. This metastable phase of titania continues to resist a facile description of its defects, particularly, in the reduced state. Nine nonequivalent sites were examined under varying levels of theory with characterization of formation energies, geometry, and electronic states extracted from Bader charges, charge density, and density of states. At DFT+U levels of theory, these sites remain nonequivalent. We note a new surface oxygen vacancy minimum related to localization of electrons at surface and a subsurface Ti atoms, rather than the more favorable localization at neighboring surface Ti atoms.

9.
J Chem Theory Comput ; 11(5): 2385-93, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-26574433

RESUMEN

Global optimization techniques for molecules, solids, and clusters are numerous and can be algorithmically elegant. Yet many of them are time-consuming and prone to getting trapped in local minima. Among the available methods, Coalescence Kick (CK) is attractive: it combines a nearly insulting simplicity with thoroughness. A new version of CK is reported here, called Adaptive Force-Field-Assisted Coalescence Kick (AFFCK). The generation of stationary points on the potential energy surface is tremendously accelerated as compared to that of the earlier, pure ab initio CK, through the introduction of an intermediate step where structures are optimized using a classical force field (FF). The FF itself is system-specific, developed on-the-fly within the algorithm. The pre-computed energies resulting from the FF step are found to be surprisingly indicative of energies in subsequent Density Functional Theory optimization, which enables AFFCK to effectively screen thousands of initial CK-generated structures for favorable starting geometries. Additionally, AFFCK incorporates the use of symmetry operations in order to enhance the diversity in the search space, increase the chance for highly symmetric structures to appear, and speed up convergence of optimizations. A structure-recognition routine ensures diversity in the search space by preventing multiple copies of the same starting geometry from being generated and run. The tests show that AFFCK is much faster than traditional ab initio-only CK. We applied AFFCK to the search for global and low-energy local minima of gas-phase clusters of boron and platinum. For Pt8 a new global minimum structure is found, which is significantly lower in energy than previously reported Pt8 minima. Although AFFCK confirms the global minima of B5(-), B8, and B9(-), it proves to be less efficient for systems with nontrivial bonding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA