Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1412614, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835858

RESUMEN

Rice blast is a destructive fungal disease affecting rice plants at various growth stages, significantly threatening global yield stability. Development of resistant rice cultivars stands as a practical means of disease control. Generally, association mapping with a diversity panel powerfully identifies new alleles controlling trait of interest. On the other hand, utilization of a breeding panel has its advantage that can be directly applied in a breeding program. In this study, we conducted a genome-wide association study (GWAS) for blast resistance using 296 commercial rice cultivars with low population structure but large phenotypic diversity. We attempt to answer the genetic basis behind rice blast resistance among early maturing cultivars by subdividing the population based on its Heading date 1 (Hd1) functionality. Subpopulation-specific GWAS using the mixed linear model (MLM) based on blast nursery screening conducted in three years revealed a total of 26 significant signals, including three nucleotide-binding site leucine-rich repeat (NBS-LRR) genes (Os06g0286500, Os06g0286700, and Os06g0287500) located at Piz locus on chromosome 6, and one at the Pi-ta locus (Os12g0281300) on chromosome 12. Haplotype analysis revealed blast resistance associated with Piz locus was exclusively specific to Type 14 hd1 among japonica rice. Our findings provide valuable insights for breeding blast resistant rice and highlight the applicability of our elite cultivar panel to detect superior alleles associated with important agronomic traits.

2.
Plants (Basel) ; 10(11)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34834770

RESUMEN

Optimizing flowering time in crop plants is critical for maximizing yield and quality under target environments. While there is a wide range of heading date variation in Korean rice cultivars, the underlying gene mechanisms are unclear. Here, we sequenced the protein coding regions of Hd1, the major rice heading date gene, from 293 Korean rice cultivars and investigated the associations between Hd1 allele types and major agronomic traits under four different environments. There were four functional Hd1 and five nonfunctional hd1 alleles distributed among the 293 Korean rice cultivars. The effects of the Hd1 allele types were highly significant for days to heading in all four environments, explaining 51.4-65.8% of the phenotypic variation. On average, cultivars carrying nonfunctional hd1 headed 13.7 days earlier than those carrying functional Hd1. While the Hd1 allele types exhibited highly significant effects on culm length and protein content under all four environments, the differences between cultivars carrying Hd1 and hd1 were minimal. The effects of the Hd1 allele types on amylose content were significant in only one of the four environments. Our results provide useful information for fine-tuning rice heading dates by utilizing different Hd1 alleles in rice breeding programs.

3.
Genes (Basel) ; 11(9)2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32825032

RESUMEN

Understanding the gene mechanisms controlling days to heading (DH) is important in rice breeding for adaption in the target environment. Using a recombinant inbred line population derived from the cross between two japonica rice cultivars, Koshihikari and Baegilmi, we identified three consistent quantitative trait loci (QTLs) for DH for two years, qDH3, qDH6, and qDH7 on chromosomes 3, 6, and 7, respectively. While Baegilmi contributed the allele for early heading at qDH6 and qDH7 with the additive effect of five days each, Koshihikari contributed the allele for early heading at qDH3 with the additive effect of three days. Notably, pyramiding two or more alleles for early heading at these QTLs accelerated heading effectively. Sequencing of Hd16, Hd1, and Ghd7, the previously known heading date genes underlying qDH3, qDH6, and qDH7, respectively, revealed that Baegilmi and Koshihikari carry different alleles at the three genes. Molecular markers were developed to screen the allelic compositions of the three genes among 295 Korean commercial rice cultivars. The results showed that few cultivars carry alleles for early heading at the three genes, highlighting that DH can be further accelerated and fine-tuned in breeding programs by combining the desirable alleles of Hd16, Hd1, and Ghd7.


Asunto(s)
Flores/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Oryza/genética , Fitomejoramiento/métodos , Plantas Modificadas Genéticamente/genética , Sitios de Carácter Cuantitativo , Adaptación Fisiológica , Flores/crecimiento & desarrollo , Genotipo , Oryza/crecimiento & desarrollo , Plantas Modificadas Genéticamente/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA