Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 19189, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932325

RESUMEN

Due to superior material properties of SiC for high-voltage devices, SiC Schottky diodes are used in energy-conversion systems such as solar-cell inverters, battery chargers, and power modules for electric cars and unmanned aerial vehicles. The reliable operation of these systems requires the chip temperature of SiC Schottky diodes to be maintained within the limit set by the device package. This is especially crucial during surge-current events that dissipate heat within the device. As a thermal-management method, manufactures of commercial SiC Schottky diodes have introduced wafer thinning practices to reduce the thickness of the SiC chip and, consequently, to reduce its thermal resistance. However, this also leads to a reduction in the thermal capacitance. In this paper, we present experimental data and theoretical analysis to demonstrate that the reduced thermal capacitance has a much larger adverse effect in comparison to the beneficial reduction of the thermal resistance. An implication of the presented results is that, contrary to the adopted wafer thinning practices, SiC Schottky diodes fabricated without wafer thinning have superior surge-current capability.

2.
Sci Rep ; 12(1): 4076, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35260739

RESUMEN

Characterization of near-interface traps (NITs) in commercial SiC metal-oxide-semiconductor field-effect transistors (MOSFETs) is essential because they adversely impact both performance and reliability by reducing the channel carrier mobility and causing threshold-voltage drift. In this work, we have applied a newly developed integrated-charge technique to measure the density of NITs that are active in the above-threshold region of commercial SiC MOSFETs. The results demonstrate that NITs trap about 10% of the channel electrons for longer than 500 ns.


Asunto(s)
Semiconductores , Transistores Electrónicos , Óxidos , Reproducibilidad de los Resultados
3.
ACS Nano ; 16(7): 10890-10903, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35816450

RESUMEN

The integration of micro- and nanoelectronics into or onto biomedical devices can facilitate advanced diagnostics and treatments of digestive disorders, cardiovascular diseases, and cancers. Recent developments in gastrointestinal endoscopy and balloon catheter technologies introduce promising paths for minimally invasive surgeries to treat these diseases. However, current therapeutic endoscopy systems fail to meet requirements in multifunctionality, biocompatibility, and safety, particularly when integrated with bioelectronic devices. Here, we report materials, device designs, and assembly schemes for transparent and stable cubic silicon carbide (3C-SiC)-based bioelectronic systems that facilitate tissue ablation, with the capability for integration onto the tips of endoscopes. The excellent optical transparency of SiC-on-glass (SoG) allows for direct observation of areas of interest, with superior electronic functionalities that enable multiple biological sensing and stimulation capabilities to assist in electrical-based ablation procedures. Experimental studies on phantom, vegetable, and animal tissues demonstrated relatively short treatment times and low electric field required for effective lesion removal using our SoG bioelectronic system. In vivo experiments on an animal model were conducted to explore the versatility of SoG electrodes for peripheral nerve stimulation, showing an exciting possibility for the therapy of neural disorders through electrical excitation. The multifunctional features of SoG integrated devices indicate their high potential for minimally invasive, cost-effective, and outcome-enhanced surgical tools, across a wide range of biomedical applications.


Asunto(s)
Compuestos Inorgánicos de Carbono , Compuestos de Silicona , Animales , Electrónica , Electrodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA