Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Inform Med Unlocked ; 24: 100621, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34075341

RESUMEN

Novel Coronavirus with its highly transmittable characteristics is rapidly spreading, endangering millions of human lives and the global economy. To expel the chain of alteration and subversive expansion, early and effective diagnosis of infected patients is immensely important. Unfortunately, there is a lack of testing equipment in many countries as compared with the number of infected patients. It would be desirable to have a swift diagnosis with identification of COVID-19 from disease genes or from CT or X-Ray images. COVID-19 causes flus, cough, pneumonia, and lung infection in patients, wherein massive alveolar damage and progressive respiratory failure can lead to death. This paper proposes two different detection methods - the first is a Gene-based screening method to detect Corona diseases (Middle East respiratory syndrome-related coronavirus, Severe acute respiratory syndrome coronavirus 2, and Human coronavirus HKU1) and differentiate it from Pneumonia. This novel approach to healthcare utilizes disease genes to build functional semantic similarity among genes. Different machine learning algorithms - eXtreme Gradient Boosting, Naïve Bayes, Regularized Random Forest, Random Forest Rule-Based Model, Random Ferns, C5.0 and Multi-Layer Perceptron, are trained and tested on the semantic similarities to classify Corona and Pneumonia diseases. The best performing models are then ensembled, yielding an accuracy of nearly 93%. The second diagnosis technique proposed herein is an automated COVID-19 diagnostic method which uses chest X-ray images to classify Normal versus COVID-19 and Pneumonia versus COVID-19 images using the deep-CNN technique, achieving 99.87% and 99.48% test accuracy. Thus, this research can be an assistance for providing better treatment against COVID-19.

2.
SN Comput Sci ; 1(6): 359, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33163973

RESUMEN

Pneumonia, an acute respiratory infection, causes serious breathing hindrance by damaging lung/s. Recovery of pneumonia patients depends on the early diagnosis of the disease and proper treatment. This paper proposes an ensemble method-based pneumonia diagnosis from Chest X-ray images. The deep Convolutional Neural Networks (CNNs)-CheXNet and VGG-19 are trained and used to extract features from given X-ray images. These features are then ensembled for classification. To overcome data irregularity problem, Random Under Sampler (RUS), Random Over Sampler (ROS) and Synthetic Minority Oversampling Technique (SMOTE) are applied on the ensembled feature vector. The ensembled feature vector is then classified using several Machine Learning (ML) classification techniques (Random Forest, Adaptive Boosting, K-Nearest Neighbors). Among these methods, Random Forest got better performance metrics than others on the available standard dataset. Comparison with existing methods shows that the proposed method attains improved classification accuracy, AUC values and outperforms all other models providing 98.93% accurate prediction. The model also exhibits potential generalization capacity when tested on different dataset. Outcomes of this study can be great to use for pneumonia diagnosis from chest X-ray images.

3.
J Integr Bioinform ; 15(3)2018 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-29470175

RESUMEN

The databases of genomic sequences are growing at an explicative rate because of the increasing growth of living organisms. Compressing deoxyribonucleic acid (DNA) sequences is a momentous task as the databases are getting closest to its threshold. Various compression algorithms are developed for DNA sequence compression. An efficient DNA compression algorithm that works on both repetitive and non-repetitive sequences known as "HuffBit Compress" is based on the concept of Extended Binary Tree. In this paper, here is proposed and developed a modified version of "HuffBit Compress" algorithm to compress and decompress DNA sequences using the R language which will always give the Best Case of the compression ratio but it uses extra 6 bits to compress than best case of "HuffBit Compress" algorithm and can be named as the "Modified HuffBit Compress Algorithm". The algorithm makes an extended binary tree based on the Huffman Codes and the maximum occurring bases (A, C, G, T). Experimenting with 6 sequences the proposed algorithm gives approximately 16.18 % improvement in compression ration over the "HuffBit Compress" algorithm and 11.12 % improvement in compression ration over the "2-Bits Encoding Method".


Asunto(s)
Algoritmos , Compresión de Datos/métodos , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Bases de Datos Factuales , Genómica , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA