Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Neurosci ; 17: 1076824, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37214404

RESUMEN

Background: A variety of quality control (QC) approaches are employed in resting-state functional magnetic resonance imaging (rs-fMRI) to determine data quality and ultimately inclusion or exclusion of a fMRI data set in group analysis. Reliability of rs-fMRI data can be improved by censoring or "scrubbing" volumes affected by motion. While censoring preserves the integrity of participant-level data, including excessively censored data sets in group analyses may add noise. Quantitative motion-related metrics are frequently reported in the literature; however, qualitative visual inspection can sometimes catch errors or other issues that may be missed by quantitative metrics alone. In this paper, we describe our methods for performing QC of rs-fMRI data using software-generated quantitative and qualitative output and trained visual inspection. Results: The data provided for this QC paper had relatively low motion-censoring, thus quantitative QC resulted in no exclusions. Qualitative checks of the data resulted in limited exclusions due to potential incidental findings and failed pre-processing scripts. Conclusion: Visual inspection in addition to the review of quantitative QC metrics is an important component to ensure high quality and accuracy in rs-fMRI data analysis.

2.
Ann Stat ; 39(1): 556-583, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25018568

RESUMEN

Improved procedures, in terms of smaller missed discovery rates (MDR), for performing multiple hypotheses testing with weak and strong control of the family-wise error rate (FWER) or the false discovery rate (FDR) are developed and studied. The improvement over existing procedures such as the Sidák procedure for FWER control and the Benjamini-Hochberg (BH) procedure for FDR control is achieved by exploiting possible differences in the powers of the individual tests. Results signal the need to take into account the powers of the individual tests and to have multiple hypotheses decision functions which are not limited to simply using the individual p-values, as is the case, for example, with the Sidák, Bonferroni, or BH procedures. They also enhance understanding of the role of the powers of individual tests, or more precisely the receiver operating characteristic (ROC) functions of decision processes, in the search for better multiple hypotheses testing procedures. A decision-theoretic framework is utilized, and through auxiliary randomizers the procedures could be used with discrete or mixed-type data or with rank-based nonparametric tests. This is in contrast to existing p-value based procedures whose theoretical validity is contingent on each of these p-value statistics being stochastically equal to or greater than a standard uniform variable under the null hypothesis. Proposed procedures are relevant in the analysis of high-dimensional "large M, small n" data sets arising in the natural, physical, medical, economic and social sciences, whose generation and creation is accelerated by advances in high-throughput technology, notably, but not limited to, microarray technology.

3.
J Nonparametr Stat ; 23(3): 583-604, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-25419090

RESUMEN

The validity of many multiple hypothesis testing procedures for false discovery rate (FDR) control relies on the assumption that P-value statistics are uniformly distributed under the null hypotheses. However, this assumption fails if the test statistics have discrete distributions or if the distributional model for the observables is misspecified. A stochastic process framework is introduced that, with the aid of a uniform variate, admits P-value statistics to satisfy the uniformity condition even when test statistics have discrete distributions. This allows nonparametric tests to be used to generate P-value statistics satisfying the uniformity condition. The resulting multiple testing procedures are therefore endowed with robustness properties. Simulation studies suggest that nonparametric randomised test P-values allow for these FDR methods to perform better when the model for the observables is nonparametric or misspecified.

4.
Metrika ; 78(5): 563-595, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26166847

RESUMEN

Two general classes of multiple decision functions, where each member of the first class strongly controls the family-wise error rate (FWER), while each member of the second class strongly controls the false discovery rate (FDR), are described. These classes offer the possibility that optimal multiple decision functions with respect to a pre-specified Type II error criterion, such as the missed discovery rate (MDR), could be found which control the FWER or FDR Type I error rates. The gain in MDR of the associated FDR-controlling procedure relative to the well-known Benjamini-Hochberg (BH) procedure is demonstrated via a modest simulation study with gamma-distributed component data. Such multiple decision functions may have the potential of being utilized in multiple testing, specifically in the analysis of high-dimensional data sets.

5.
J Multivar Anal ; 126: 153-166, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25076800

RESUMEN

Many multiple testing procedures make use of the p-values from the individual pairs of hypothesis tests, and are valid if the p-value statistics are independent and uniformly distributed under the null hypotheses. However, it has recently been shown that these types of multiple testing procedures are inefficient since such p-values do not depend upon all of the available data. This paper provides tools for constructing compound p-value statistics, which are those that depend upon all of the available data, but still satisfy the conditions of independence and uniformity under the null hypotheses. Several examples are provided, including a class of compound p-value statistics for testing location shifts. It is demonstrated, both analytically and through simulations, that multiple testing procedures tend to reject more false null hypotheses when applied to these compound p-values rather than the usual p-values, and at the same time still guarantee the desired type I error rate control. The compound p-values are used to analyze a real microarray data set and allow for more rejected null hypotheses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA