Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 52(4): 1817-1826, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29370515

RESUMEN

Organic matter in the sea surface microlayer (SML) may be transferred to the atmosphere as sea spray and hence influence the composition and properties of marine aerosol. Recent work has demonstrated that the SML contains material capable of heterogeneously nucleating ice, but the nature of this material remains largely unknown. Water-soluble organic matter was extracted from SML and underlying seawater from the Arctic and analyzed using a combination of mass spectrometric approaches. High performance liquid chromatography-ion trap mass spectrometry (LC-IT-MS), and Fourier transform ion cyclotron resonance MS (FT-ICR-MS), showed seawater extracts to be compositionally similar across all stations, whereas microlayer extracts had a different and more variable composition. LC-IT-MS demonstrated the enrichment of particular ions in the microlayer. Ice nucleation ability (defined as the median droplet freezing temperature) appeared to be related to the relative abundances of some ions, although the extracts themselves did not retain this property. Molecular formulas were assigned using LC-quadrupole time-of-flight MS (LC-TOF-MS2) and FT-ICR-MS. The ice nucleation tracer ions were associated with elevated biogenic trace gases, and were also observed in atmospheric aerosol collected during the summer, but not early spring suggesting a biogenic source of ice nuclei in the Arctic microlayer.


Asunto(s)
Hielo , Agua , Aerosoles , Regiones Árticas , Agua de Mar
2.
Environ Sci Technol ; 51(18): 10449-10458, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28752764

RESUMEN

We report novel in situ speciated observations of monoterpenes (α- and ß-pinene, myrcene, δ3-carene, ocimene, limonene) in seawater and air during three cruises in the Arctic and Atlantic Oceans, in/over generally oligotrophic waters. Oceanic concentrations of the individual monoterpenes ranged from below the detection limit of <1 pmol L-1 to 5 pmol L-1, with average concentrations of between 0.5 and 2.9 pmol L-1. After careful filtering for contamination, atmospheric mixing ratios varied from below the detection limit (<1 pptv) to 5 pptv, with averages of 0.05-5 pptv; these levels are up to 2 orders of magnitude lower than those reported previously. This could be at least partly due to sampling over waters with much lower biological activity than in previous studies. Unlike in previous studies, no clear relationships of the monoterpenes with biological variables were found. Based on our measured seawater concentrations and a global model simulation, we estimate total global marine monoterpene emissions of 0.16 Tg C yr-1, similar to a previous bottom-up estimate based on laboratory monoculture studies but 2 orders of magnitude lower than a previous top-down estimate of 29.5 Tg C yr-1.


Asunto(s)
Monoterpenos/análisis , Regiones Árticas , Océano Atlántico , Compuestos Bicíclicos con Puentes , Monitoreo del Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA