Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cell ; 161(6): 1453-67, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26046444

RESUMEN

Resetting of the epigenome in human primordial germ cells (hPGCs) is critical for development. We show that the transcriptional program of hPGCs is distinct from that in mice, with co-expression of somatic specifiers and naive pluripotency genes TFCP2L1 and KLF4. This unique gene regulatory network, established by SOX17 and BLIMP1, drives comprehensive germline DNA demethylation by repressing DNA methylation pathways and activating TET-mediated hydroxymethylation. Base-resolution methylome analysis reveals progressive DNA demethylation to basal levels in week 5-7 in vivo hPGCs. Concurrently, hPGCs undergo chromatin reorganization, X reactivation, and imprint erasure. Despite global hypomethylation, evolutionarily young and potentially hazardous retroelements, like SVA, remain methylated. Remarkably, some loci associated with metabolic and neurological disorders are also resistant to DNA demethylation, revealing potential for transgenerational epigenetic inheritance that may have phenotypic consequences. We provide comprehensive insight on early human germline transcriptional network and epigenetic reprogramming that subsequently impacts human development and disease.


Asunto(s)
Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Genoma Humano , Células Germinativas/metabolismo , Animales , Metilación de ADN , Embrión de Mamíferos/metabolismo , Femenino , Humanos , Factor 4 Similar a Kruppel , Masculino , Ratones , Regiones Promotoras Genéticas , Retroelementos
2.
Nature ; 629(8012): 652-659, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693261

RESUMEN

The gut microbiota operates at the interface of host-environment interactions to influence human homoeostasis and metabolic networks1-4. Environmental factors that unbalance gut microbial ecosystems can therefore shape physiological and disease-associated responses across somatic tissues5-9. However, the systemic impact of the gut microbiome on the germline-and consequently on the F1 offspring it gives rise to-is unexplored10. Here we show that the gut microbiota act as a key interface between paternal preconception environment and intergenerational health in mice. Perturbations to the gut microbiota of prospective fathers increase the probability of their offspring presenting with low birth weight, severe growth restriction and premature mortality. Transmission of disease risk occurs via the germline and is provoked by pervasive gut microbiome perturbations, including non-absorbable antibiotics or osmotic laxatives, but is rescued by restoring the paternal microbiota before conception. This effect is linked with a dynamic response to induced dysbiosis in the male reproductive system, including impaired leptin signalling, altered testicular metabolite profiles and remapped small RNA payloads in sperm. As a result, dysbiotic fathers trigger an elevated risk of in utero placental insufficiency, revealing a placental origin of mammalian intergenerational effects. Our study defines a regulatory 'gut-germline axis' in males, which is sensitive to environmental exposures and programmes offspring fitness through impacting placenta function.


Asunto(s)
Susceptibilidad a Enfermedades , Disbiosis , Padre , Microbioma Gastrointestinal , Insuficiencia Placentaria , Lesiones Prenatales , Espermatozoides , Animales , Femenino , Masculino , Ratones , Embarazo , Disbiosis/complicaciones , Disbiosis/microbiología , Microbioma Gastrointestinal/fisiología , Leptina/metabolismo , Ratones Endogámicos C57BL , Placenta/metabolismo , Placenta/fisiopatología , Insuficiencia Placentaria/etiología , Insuficiencia Placentaria/metabolismo , Insuficiencia Placentaria/fisiopatología , Resultado del Embarazo , Lesiones Prenatales/etiología , Lesiones Prenatales/metabolismo , Lesiones Prenatales/fisiopatología , Transducción de Señal , Espermatozoides/metabolismo , Testículo/metabolismo , Testículo/fisiopatología , Susceptibilidad a Enfermedades/etiología
3.
Cell ; 153(4): 737-9, 2013 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-23663772

RESUMEN

Epigenetic reprogramming of parental genomes following fertilization is important to ensure compatibility for totipotency and development thereafter. New studies by Jiang et al. and Potok et al. now demonstrate how the parental DNA methylomes are reset in zebrafish and reveal striking differences from events in mammals.

4.
EMBO J ; 41(7): e108677, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35199868

RESUMEN

Environmental factors can trigger cellular responses that propagate across mitosis or even generations. Perturbations to the epigenome could underpin such acquired changes, however, the extent and contexts in which modified chromatin states confer heritable memory in mammals is unclear. Here, we exploit a precision epigenetic editing strategy and forced Xist activity to programme de novo heterochromatin domains (epialleles) at endogenous loci and track their inheritance in a developmental model. We find that naïve pluripotent phases systematically erase ectopic domains of heterochromatin via active mechanisms, which likely acts as an intergenerational safeguard against transmission of epialleles. Upon lineage specification, however, acquired chromatin states can be probabilistically inherited under selectively favourable conditions, including propagation of p53 silencing through in vivo development. Using genome-wide CRISPR screening, we identify molecular factors that restrict heritable memory of epialleles in naïve pluripotent cells, and demonstrate that removal of chromatin factor Dppa2 unlocks the potential for epigenetic inheritance uncoupled from DNA sequence. Our study outlines a mechanistic basis for how epigenetic inheritance is constrained in mammals, and reveals genomic and developmental contexts in which heritable memory is feasible.


Asunto(s)
Epigénesis Genética , Epigenómica , Animales , Cromatina , Genoma , Heterocromatina , Mamíferos/genética
5.
Bioessays ; 43(5): e2000316, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33724509

RESUMEN

How epigenetic mechanisms regulate genome output and response to stimuli is a fundamental question in development and disease. Past decades have made tremendous progress in deciphering the regulatory relationships involved by correlating aggregated (epi)genomics profiles with global perturbations. However, the recent development of epigenetic editing technologies now enables researchers to move beyond inferred conclusions, towards explicit causal reasoning, through 'programing' precise chromatin perturbations in single cells. Here, we first discuss the major unresolved questions in the epigenetics field that can be addressed by programable epigenome editing, including the context-dependent function and memory of chromatin states. We then describe the epigenetic editing toolkit focusing on CRISPR-based technologies, and highlight its achievements, drawbacks and promise. Finally, we consider the potential future application of epigenetic editing to the study and treatment of specific disease conditions.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Cromatina/genética , Epigénesis Genética/genética , Epigenómica
6.
Mol Cell ; 55(2): 319-31, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25038413

RESUMEN

Cell populations can be strikingly heterogeneous, composed of multiple cellular states, each exhibiting stochastic noise in its gene expression. A major challenge is to disentangle these two types of variability and to understand the dynamic processes and mechanisms that control them. Embryonic stem cells (ESCs) provide an ideal model system to address this issue because they exhibit heterogeneous and dynamic expression of functionally important regulatory factors. We analyzed gene expression in individual ESCs using single-molecule RNA-FISH and quantitative time-lapse movies. These data discriminated stochastic switching between two coherent (correlated) gene expression states and burst-like transcriptional noise. We further showed that the "2i" signaling pathway inhibitors modulate both types of variation. Finally, we found that DNA methylation plays a key role in maintaining these metastable states. Together, these results show how ESC gene expression states and dynamics arise from a combination of intrinsic noise, coherent cellular states, and epigenetic regulation.


Asunto(s)
Metilación de ADN , Células Madre Embrionarias/metabolismo , Transcriptoma , Animales , Células Cultivadas , Epigénesis Genética , Perfilación de la Expresión Génica , Hibridación Fluorescente in Situ , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de la Célula Individual , Imagen de Lapso de Tiempo
7.
Mol Cell ; 56(4): 564-79, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25457166

RESUMEN

Primordial germ cells (PGCs) and preimplantation embryos undergo epigenetic reprogramming, which includes comprehensive DNA demethylation. We found that PRMT5, an arginine methyltransferase, translocates from the cytoplasm to the nucleus during this process. Here we show that conditional loss of PRMT5 in early PGCs causes complete male and female sterility, preceded by the upregulation of LINE1 and IAP transposons as well as activation of a DNA damage response. Similarly, loss of maternal-zygotic PRMT5 also leads to IAP upregulation. PRMT5 is necessary for the repressive H2A/H4R3me2s chromatin modification on LINE1 and IAP transposons in PGCs, directly implicating this modification in transposon silencing during DNA hypomethylation. PRMT5 translocates back to the cytoplasm subsequently, to participate in the previously described PIWI-interacting RNA (piRNA) pathway that promotes transposon silencing via de novo DNA remethylation. Thus, PRMT5 is directly involved in genome defense during preimplantation development and in PGCs at the time of global DNA demethylation.


Asunto(s)
Blastocisto/enzimología , Metilación de ADN , Inestabilidad Genómica , Óvulo/enzimología , Proteína Metiltransferasas/fisiología , Espermatozoides/enzimología , Animales , Apoptosis , Blastocisto/citología , Células Cultivadas , Daño del ADN , Elementos Transponibles de ADN , Desarrollo Embrionario , Células Madre Embrionarias/enzimología , Femenino , Histonas/metabolismo , Masculino , Ratones Transgénicos , Procesamiento Proteico-Postraduccional , Proteína-Arginina N-Metiltransferasas
8.
Trends Genet ; 28(4): 164-74, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22386917

RESUMEN

Germ cells possess the extraordinary and unique capacity to give rise to a new organism and create an enduring link between all generations. To acquire this property, primordial germ cells (PGCs) transit through an unprecedented programme of sequential epigenetic events that culminates in an epigenomic basal state that is the foundation of totipotency. This process is underpinned by genome-wide DNA demethylation, which may occur through several overlapping pathways, including conversion to 5-hydroxymethylcytosine. We propose that the epigenetic programme in PGCs operates through multiple parallel mechanisms to ensure robustness at the level of individual cells while also being flexible through functional redundancy to guarantee high fidelity of the process. Gaining a better understanding of the molecular mechanisms that direct epigenetic reprogramming in PGCs will enhance our ability to manipulate epigenetic memory, cell-fate decisions and applications in regenerative medicine.


Asunto(s)
Reprogramación Celular , Epigénesis Genética , Células Germinativas/metabolismo , Animales , Linaje de la Célula , Metilación de ADN , Células Germinativas/citología , Humanos
9.
Development ; 139(19): 3623-32, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22949617

RESUMEN

Mouse primordial germ cells (PGCs) erase global DNA methylation (5mC) as part of the comprehensive epigenetic reprogramming that occurs during PGC development. 5mC plays an important role in maintaining stable gene silencing and repression of transposable elements (TE) but it is not clear how the extensive loss of DNA methylation impacts on gene expression and TE repression in developing PGCs. Using a novel epigenetic disruption and recovery screen and genetic analyses, we identified a core set of germline-specific genes that are dependent exclusively on promoter DNA methylation for initiation and maintenance of developmental silencing. These gene promoters appear to possess a specialised chromatin environment that does not acquire any of the repressive H3K27me3, H3K9me2, H3K9me3 or H4K20me3 histone modifications when silenced by DNA methylation. Intriguingly, this methylation-dependent subset is highly enriched in genes with roles in suppressing TE activity in germ cells. We show that the mechanism for developmental regulation of the germline genome-defence genes involves DNMT3B-dependent de novo DNA methylation. These genes are then activated by lineage-specific promoter demethylation during distinct global epigenetic reprogramming events in migratory (~E8.5) and post-migratory (E10.5-11.5) PGCs. We propose that genes involved in genome defence are developmentally regulated primarily by promoter DNA methylation as a sensory mechanism that is coupled to the potential for TE activation during global 5mC erasure, thereby acting as a failsafe to ensure TE suppression and maintain genomic integrity in the germline.


Asunto(s)
Metilación de ADN/fisiología , Desarrollo Embrionario/genética , Epigénesis Genética , Genoma , Células Germinativas/metabolismo , Regiones Promotoras Genéticas , Animales , Células Cultivadas , Ensamble y Desensamble de Cromatina/genética , Citoprotección/genética , Daño del ADN/genética , Embrión de Mamíferos , Epigénesis Genética/fisiología , Genoma/genética , Células Germinativas/fisiología , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Regiones Promotoras Genéticas/fisiología
10.
EMBO Rep ; 14(7): 629-37, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23670199

RESUMEN

Primordial germ cells (PGCs) and somatic cells originate from postimplantation epiblast cells in mice. As pluripotency is lost upon differentiation of somatic lineages, a naive epigenome and the pluripotency network are re-established during PGC development. Here we demonstrate that Prdm14 contributes not only to PGC specification, but also to naive pluripotency in embryonic stem (ES) cells by repressing the DNA methylation machinery and fibroblast growth factor (FGF) signalling. This indicates a critical role for Prdm14 in programming PGCs and promoting pluripotency in ES cells.


Asunto(s)
Células Madre Embrionarias/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/metabolismo , Células Madre Pluripotentes/metabolismo , Factores de Transcripción/genética , Animales , Diferenciación Celular , Metilación de ADN , Proteínas de Unión al ADN , Células Madre Embrionarias/citología , Factores de Crecimiento de Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Células Germinativas/citología , Estratos Germinativos/citología , Estratos Germinativos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Células Madre Pluripotentes/citología , Proteínas de Unión al ARN , Transducción de Señal , Factores de Transcripción/metabolismo
11.
Nat Genet ; 56(6): 1168-1180, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38724747

RESUMEN

Chromatin modifications are linked with regulating patterns of gene expression, but their causal role and context-dependent impact on transcription remains unresolved. Here we develop a modular epigenome editing platform that programs nine key chromatin modifications, or combinations thereof, to precise loci in living cells. We couple this with single-cell readouts to systematically quantitate the magnitude and heterogeneity of transcriptional responses elicited by each specific chromatin modification. Among these, we show that installing histone H3 lysine 4 trimethylation (H3K4me3) at promoters can causally instruct transcription by hierarchically remodeling the chromatin landscape. We further dissect how DNA sequence motifs influence the transcriptional impact of chromatin marks, identifying switch-like and attenuative effects within distinct cis contexts. Finally, we examine the interplay of combinatorial modifications, revealing that co-targeted H3K27 trimethylation (H3K27me3) and H2AK119 monoubiquitination (H2AK119ub) maximizes silencing penetrance across single cells. Our precision-perturbation strategy unveils the causal principles of how chromatin modification(s) influence transcription and dissects how quantitative responses are calibrated by contextual interactions.


Asunto(s)
Cromatina , Epigenoma , Edición Génica , Histonas , Cromatina/metabolismo , Cromatina/genética , Histonas/metabolismo , Histonas/genética , Humanos , Edición Génica/métodos , Epigénesis Genética , Regiones Promotoras Genéticas , Ensamble y Desensamble de Cromatina , Ubiquitinación , Código de Histonas , Transcripción Genética , Análisis de la Célula Individual/métodos
12.
Nat Cell Biol ; 25(5): 643-657, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37106060

RESUMEN

During embryonic development, naive pluripotent epiblast cells transit to a formative state. The formative epiblast cells form a polarized epithelium, exhibit distinct transcriptional and epigenetic profiles and acquire competence to differentiate into all somatic and germline lineages. However, we have limited understanding of how the transition to a formative state is molecularly controlled. Here we used murine embryonic stem cell models to show that ESRRB is both required and sufficient to activate formative genes. Genetic inactivation of Esrrb leads to illegitimate expression of mesendoderm and extra-embryonic markers, impaired formative expression and failure to self-organize in 3D. Functionally, this results in impaired ability to generate formative stem cells and primordial germ cells in the absence of Esrrb. Computational modelling and genomic analyses revealed that ESRRB occupies key formative genes in naive cells and throughout the formative state. In so doing, ESRRB kickstarts the formative transition, leading to timely and unbiased capacity for multi-lineage differentiation.


Asunto(s)
Células Madre Embrionarias , Células Madre Pluripotentes , Ratones , Animales , Diferenciación Celular/genética , Células Madre Pluripotentes/metabolismo , Estratos Germinativos/metabolismo , Células Germinativas/metabolismo , Receptores de Estrógenos/metabolismo
13.
Methods Mol Biol ; 2214: 91-108, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32944905

RESUMEN

Knockout CRISPR screening enables the unbiased discovery of genes with a functional role in almost any cellular or molecular process of interest. The approach couples a genome-scale library of guide RNA (gRNA), the Cas9 endonuclease, and a faithful phenotypic read-out to systematically identify candidate genes via their loss-of-function effect. Here we provide a detailed description of the CRISPR screen protocol and outline how to apply it to decipher the gene networks that underlie developmental cell fate decisions. As a paradigm we use the in vitro model of cell state transition(s) from naive pluripotency to primordial germ cell (PGC) fate, exploiting the Stella-GFP:Esg1-tdTomato (SGET) mouse ESC line. The principles in this protocol can be readily adapted to characterize lineage regulators for other cell fate models and/or for other species.


Asunto(s)
Sistemas CRISPR-Cas , Células Germinales Embrionarias/citología , Células Madre Embrionarias de Ratones/citología , Animales , Diferenciación Celular , Línea Celular , Células Germinales Embrionarias/metabolismo , Redes Reguladoras de Genes , Células HEK293 , Humanos , Ratones , Células Madre Embrionarias de Ratones/metabolismo , ARN Guía de Kinetoplastida/genética , Transducción Genética
14.
Cell Stem Cell ; 28(2): 209-216.e4, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33207217

RESUMEN

Cell differentiation typically occurs with concomitant shape transitions to enable specialized functions. To adopt a different shape, cells need to change the mechanical properties of their surface. However, whether cell surface mechanics control the process of differentiation has been relatively unexplored. Here we show that membrane mechanics gate exit from naive pluripotency of mouse embryonic stem cells. By measuring membrane tension during early differentiation, we find that naive stem cells release their plasma membrane from the underlying actin cortex when transitioning to a primed state. By mechanically tethering the plasma membrane to the cortex by enhancing Ezrin activity or expressing a synthetic signaling-inert linker, we demonstrate that preventing this detachment forces stem cells to retain their naive pluripotent identity. We thus identify a decrease in membrane-to-cortex attachment as a new cell-intrinsic mechanism that is essential for stem cells to exit pluripotency.


Asunto(s)
Células Madre Embrionarias , Células Madre Embrionarias de Ratones , Animales , Diferenciación Celular , Membrana Celular , Ratones , Transducción de Señal
15.
Nat Struct Mol Biol ; 27(8): 706-716, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32572256

RESUMEN

Early mammalian development entails genome-wide epigenome remodeling, including DNA methylation erasure and reacquisition, which facilitates developmental competence. To uncover the mechanisms that orchestrate DNA methylation dynamics, we coupled a single-cell ratiometric DNA methylation reporter with unbiased CRISPR screening in murine embryonic stem cells (ESCs). We identify key genes and regulatory pathways that drive global DNA hypomethylation, and characterize roles for Cop1 and Dusp6. We also identify Dppa2 and Dppa4 as essential safeguards of focal epigenetic states. In their absence, developmental genes and evolutionarily young LINE1 elements, which are specifically bound by DPPA2, lose H3K4me3 and gain ectopic de novo DNA methylation in pluripotent cells. Consequently, lineage-associated genes and LINE1 acquire a repressive epigenetic memory, which renders them incompetent for activation during future lineage specification. Dppa2/4 thereby sculpt the pluripotent epigenome by facilitating H3K4me3 and bivalency to counteract de novo methylation, a function co-opted by evolutionarily young LINE1 to evade epigenetic decommissioning.


Asunto(s)
Metilación de ADN , Células Madre Embrionarias de Ratones/metabolismo , Proteínas Nucleares/genética , Factores de Transcripción/genética , Animales , Sistemas CRISPR-Cas , Línea Celular , Epigenoma , Regulación del Desarrollo de la Expresión Génica , Elementos de Nucleótido Esparcido Largo , Ratones , Células Madre Embrionarias de Ratones/citología , Proteínas Nucleares/metabolismo , Análisis de la Célula Individual , Factores de Transcripción/metabolismo
16.
Sci Rep ; 9(1): 19214, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31844114

RESUMEN

Gene delivery using vector or viral-based methods is often limited by technical and safety barriers. A promising alternative that circumvents these shortcomings is the direct delivery of proteins into cells. Here we introduce a non-viral, ligand-mediated protein delivery system capable of selectively targeting primary skin cells in-vivo. Using orthologous self-labelling tags and chemical cross-linkers, we conjugate large proteins to ligands that bind their natural receptors on the surface of keratinocytes. Targeted CRE-mediated recombination was achieved by delivery of ligand cross-linked CRE protein to the skin of transgenic reporter mice, but was absent in mice lacking the ligand's cell surface receptor. We further show that ligands mediate the intracellular delivery of Cas9 allowing for CRISPR-mediated gene editing in the skin more efficiently than adeno-associated viral gene delivery. Thus, a ligand-based system enables the effective and receptor-specific delivery of large proteins and may be applied to the treatment of skin-related genetic diseases.


Asunto(s)
Proteínas/genética , Proteínas/metabolismo , Animales , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Dependovirus/genética , Edición Génica/métodos , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Queratinocitos/metabolismo , Ligandos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Piel/metabolismo
17.
Nat Commun ; 9(1): 5328, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30538240

RESUMEN

Ufuk Günesdogan was incorrectly associated with Center for Genetic Analysis of Behaviour, National Institute for Physiological Sciences, 5-1 Higashiyama Myodaiji, Okazaki, Aichi 444-8787, Japan and Toshihiro Kobayashi was incorrectly associated with Department of Developmental Biology, University of Göttingen, Göttingen Center for Molecular Biosciences, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany. This has now been corrected in both the PDF and HTML versions of the Article.

18.
Nat Commun ; 9(1): 4292, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30327475

RESUMEN

Early mammalian development entails transit through naive pluripotency towards post-implantation epiblast, which subsequently gives rise to primordial germ cells (PGC), the founding germline population. To investigate these cell fate transitions, we developed a compound-reporter to track cellular identity in a model of PGC specification (PGC-like cells; PGCLC), and coupled it with genome-wide CRISPR screening. We identify key genes both for exit from pluripotency and for acquisition of PGC fate, and characterise a central role for the transcription regulators Nr5a2 and Zfp296 in germline ontogeny. Abrogation of these genes results in widespread activation (Nr5a2-/-) or inhibition (Zfp296-/-) of WNT pathway factors in PGCLC. This leads to aberrant upregulation of the somatic programme or failure to activate germline genes, respectively, and consequently loss of germ cell identity. Our study places Zfp296 and Nr5a2 as key components of an expanded PGC gene regulatory network, and outlines a transferable strategy for identifying critical regulators of complex cell fate decisions.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Regulación del Desarrollo de la Expresión Génica , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas Cromosómicas no Histona , Proteínas de Unión al ADN/genética , Desarrollo Embrionario/genética , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Transgénicos , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Receptores Citoplasmáticos y Nucleares/genética , Proteínas Represoras/genética , Proteínas Wnt/genética
19.
Stem Cell Reports ; 8(6): 1645-1658, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28591649

RESUMEN

Embryonic stem cells (ESCs) are characterized by the pluripotent capacity to generate all embryonic lineages. Here, we show that ESCs can occupy a spectrum of distinct transcriptional and epigenetic states in response to varied extrinsic conditions. This spectrum broadly corresponds to a developmental continuum of pluripotency and is coupled with a gradient of increasing global DNA methylation. Each pluripotent state is linked with activation of distinct classes of transposable elements (TEs), which in turn influence ESCs through generating chimeric transcripts. Moreover, varied ESC culture parameters differentially license heterogeneous activation of master lineage regulators, including Sox1, Gata4, or Blimp1, and influence differentiation. Activation of Blimp1 is prevalent in 2i (without LIF) conditions, and marks a dynamic primordial germ cell (PGC)-like sub-state that is directly repressed by Klf4 downstream of LIF/STAT3 signaling. Thus, extrinsic cues establish a spectrum of pluripotent states, in part by modulating sub-populations, as well as directing the transcriptome, epigenome, and TE.


Asunto(s)
Elementos Transponibles de ADN/genética , Células Madre Pluripotentes/metabolismo , Animales , Sistemas CRISPR-Cas/genética , Diferenciación Celular , Línea Celular , Linaje de la Célula , Metilación de ADN , Factor de Transcripción GATA4/metabolismo , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factor Inhibidor de Leucemia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Pluripotentes/citología , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Análisis de Componente Principal , Factores de Transcripción SOXB1/metabolismo , Factor de Transcripción STAT3/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
Elife ; 62017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28323615

RESUMEN

The maternal-to-zygotic transition (MZT) marks the period when the embryonic genome is activated and acquires control of development. Maternally inherited factors play a key role in this critical developmental process, which occurs at the 2-cell stage in mice. We investigated the function of the maternally inherited factor Stella (encoded by Dppa3) using single-cell/embryo approaches. We show that loss of maternal Stella results in widespread transcriptional mis-regulation and a partial failure of MZT. Strikingly, activation of endogenous retroviruses (ERVs) is significantly impaired in Stella maternal/zygotic knockout embryos, which in turn leads to a failure to upregulate chimeric transcripts. Amongst ERVs, MuERV-L activation is particularly affected by the absence of Stella, and direct in vivo knockdown of MuERV-L impacts the developmental potential of the embryo. We propose that Stella is involved in ensuring activation of ERVs, which themselves play a potentially key role during early development, either directly or through influencing embryonic gene expression.


Asunto(s)
Diferenciación Celular , Retrovirus Endógenos/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Represoras/metabolismo , Cigoto/fisiología , Animales , Proteínas Cromosómicas no Histona , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA