Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Cell ; 171(3): 588-600.e24, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-28988770

RESUMEN

Condensin protein complexes coordinate the formation of mitotic chromosomes and thereby ensure the successful segregation of replicated genomes. Insights into how condensin complexes bind to chromosomes and alter their topology are essential for understanding the molecular principles behind the large-scale chromatin rearrangements that take place during cell divisions. Here, we identify a direct DNA-binding site in the eukaryotic condensin complex, which is formed by its Ycg1Cnd3 HEAT-repeat and Brn1Cnd2 kleisin subunits. DNA co-crystal structures reveal a conserved, positively charged groove that accommodates the DNA double helix. A peptide loop of the kleisin subunit encircles the bound DNA and, like a safety belt, prevents its dissociation. Firm closure of the kleisin loop around DNA is essential for the association of condensin complexes with chromosomes and their DNA-stimulated ATPase activity. Our data suggest a sophisticated molecular basis for anchoring condensin complexes to chromosomes that enables the formation of large-sized chromatin loops.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cromosomas/metabolismo , Proteínas de Unión al ADN/metabolismo , Eucariontes/metabolismo , Proteínas Fúngicas/metabolismo , Complejos Multiproteicos/metabolismo , Adenosina Trifosfatasas/química , Secuencia de Aminoácidos , Chaetomium/metabolismo , Cromosomas/química , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , Proteínas de Unión al ADN/química , Eucariontes/química , Proteínas Fúngicas/química , Células HeLa , Humanos , Modelos Moleculares , Complejos Multiproteicos/química , Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia
2.
Cell ; 164(1-2): 326-326.e1, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26771499

RESUMEN

This first of two SnapShots on SMC proteins depicts the composition and architecture of SMC protein complexes and their regulators. Their roles at different stages of the cell cycle will appear in Part II. To view this SnapShot, open or download the PDF.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Eucariotas/metabolismo , Complejos Multiproteicos/metabolismo , Animales , Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , Cromosomas/química , Cromosomas/metabolismo , Células Eucariotas/química , Complejos Multiproteicos/química , Cohesinas
3.
Cell ; 164(4): 818.e1, 2016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26871638

RESUMEN

This second of two SnapShots on SMC proteins depicts their roles at different stages of the eukaryotic cell cycle. The composition and architecture of SMC protein complexes and their regulators appear in SMC Protein Complexes Part I (available at http://www.cell.com/cell/pdf/S0092-8674%2815%2901690-6.pdf). To view this SnapShot, open or download the PDF.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Células Eucariotas/metabolismo , Complejos Multiproteicos/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/química , Células Eucariotas/citología , Humanos , Complejos Multiproteicos/química
4.
Mol Cell ; 74(6): 1175-1188.e9, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31226277

RESUMEN

The condensin protein complex plays a key role in the structural organization of genomes. How the ATPase activity of its SMC subunits drives large-scale changes in chromosome topology has remained unknown. Here we reconstruct, at near-atomic resolution, the sequence of events that take place during the condensin ATPase cycle. We show that ATP binding induces a conformational switch in the Smc4 head domain that releases its hitherto undescribed interaction with the Ycs4 HEAT-repeat subunit and promotes its engagement with the Smc2 head into an asymmetric heterodimer. SMC head dimerization subsequently enables nucleotide binding at the second active site and disengages the Brn1 kleisin subunit from the Smc2 coiled coil to open the condensin ring. These large-scale transitions in the condensin architecture lay out a mechanistic path for its ability to extrude DNA helices into large loop structures.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfato/química , Proteínas Portadoras/química , Chaetomium/genética , Proteínas Cromosómicas no Histona/química , Proteínas de Unión al ADN/química , ADN/química , Complejos Multiproteicos/química , Proteínas Nucleares/química , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Chaetomium/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/metabolismo , Cromosomas/ultraestructura , Cristalografía por Rayos X , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Expresión Génica , Células HeLa , Humanos , Modelos Moleculares , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
5.
Mol Cell ; 76(5): 724-737.e5, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31629658

RESUMEN

Condensin is a conserved SMC complex that uses its ATPase machinery to structure genomes, but how it does so is largely unknown. We show that condensin's ATPase has a dual role in chromosome condensation. Mutation of one ATPase site impairs condensation, while mutating the second site results in hyperactive condensin that compacts DNA faster than wild-type, both in vivo and in vitro. Whereas one site drives loop formation, the second site is involved in the formation of more stable higher-order Z loop structures. Using hyperactive condensin I, we reveal that condensin II is not intrinsically needed for the shortening of mitotic chromosomes. Condensin II rather is required for a straight chromosomal axis and enables faithful chromosome segregation by counteracting the formation of ultrafine DNA bridges. SMC complexes with distinct roles for each ATPase site likely reflect a universal principle that enables these molecular machines to intricately control chromosome architecture.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Ensamble y Desensamble de Cromatina/fisiología , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/fisiología , Adenosina Trifosfato/química , Sitios de Unión/genética , Sitios de Unión/fisiología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Cromatina/fisiología , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/metabolismo , Cromosomas/fisiología , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Humanos , Complejos Multiproteicos/fisiología , Unión Proteica/fisiología , Subunidades de Proteína/metabolismo , Cohesinas
6.
Nature ; 579(7799): 438-442, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32132705

RESUMEN

Condensin, a key component of the structure maintenance of chromosome (SMC) protein complexes, has recently been shown to be a motor that extrudes loops of DNA1. It remains unclear, however, how condensin complexes work together to collectively package DNA into chromosomes. Here we use time-lapse single-molecule visualization to study mutual interactions between two DNA-loop-extruding yeast condensins. We find that these motor proteins, which, individually, extrude DNA in one direction only are able to dynamically change each other's DNA loop sizes, even when far apart. When they are in close proximity, condensin complexes are able to traverse each other and form a loop structure, which we term a Z-loop-three double-stranded DNA helices aligned in parallel with one condensin at each edge. Z-loops can fill gaps left by single loops and can form symmetric dimer motors that pull in DNA from both sides. These findings indicate that condensin may achieve chromosomal compaction using a variety of looping structures.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/química , ADN/metabolismo , Proteínas Motoras Moleculares/metabolismo , Complejos Multiproteicos/metabolismo , Conformación de Ácido Nucleico , Conformación Proteica , Saccharomyces cerevisiae , Adenosina Trifosfatasas/química , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/química , Cromosomas/metabolismo , Proteínas de Unión al ADN/química , Proteínas Motoras Moleculares/química , Complejos Multiproteicos/química , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Imagen Individual de Molécula , Imagen de Lapso de Tiempo
7.
Nature ; 551(7678): 51-56, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-29094699

RESUMEN

Imaging and chromosome conformation capture studies have revealed several layers of chromosome organization, including segregation into megabase-sized active and inactive compartments, and partitioning into sub-megabase domains (TADs). It remains unclear, however, how these layers of organization form, interact with one another and influence genome function. Here we show that deletion of the cohesin-loading factor Nipbl in mouse liver leads to a marked reorganization of chromosomal folding. TADs and associated Hi-C peaks vanish globally, even in the absence of transcriptional changes. By contrast, compartmental segregation is preserved and even reinforced. Strikingly, the disappearance of TADs unmasks a finer compartment structure that accurately reflects the underlying epigenetic landscape. These observations demonstrate that the three-dimensional organization of the genome results from the interplay of two independent mechanisms: cohesin-independent segregation of the genome into fine-scale compartments, defined by chromatin state; and cohesin-dependent formation of TADs, possibly by loop extrusion, which helps to guide distant enhancers to their target genes.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Posicionamiento de Cromosoma , Animales , Cromatina/química , Cromatina/genética , Elementos de Facilitación Genéticos/genética , Epigénesis Genética , Hígado/metabolismo , Ratones , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Cohesinas
8.
EMBO J ; 36(23): 3448-3457, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29118001

RESUMEN

Condensin, a conserved member of the SMC protein family of ring-shaped multi-subunit protein complexes, is essential for structuring and compacting chromosomes. Despite its key role, its molecular mechanism has remained largely unknown. Here, we employ single-molecule magnetic tweezers to measure, in real time, the compaction of individual DNA molecules by the budding yeast condensin complex. We show that compaction can proceed in large steps, driving DNA molecules into a fully condensed state against forces of up to 2 pN. Compaction can be reversed by applying high forces or adding buffer of high ionic strength. While condensin can stably bind DNA in the absence of ATP, ATP hydrolysis by the SMC subunits is required for rendering the association salt insensitive and for the subsequent compaction process. Our results indicate that the condensin reaction cycle involves two distinct steps, where condensin first binds DNA through electrostatic interactions before using ATP hydrolysis to encircle the DNA topologically within its ring structure, which initiates DNA compaction. The finding that both binding modes are essential for its DNA compaction activity has important implications for understanding the mechanism of chromosome compaction.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/metabolismo , ADN de Hongos/química , Proteínas de Unión al ADN/genética , Hidrólisis , Magnetismo , Modelos Moleculares , Complejos Multiproteicos/genética , Conformación de Ácido Nucleico , Pinzas Ópticas , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Electricidad Estática
9.
J Biol Chem ; 294(37): 13822-13829, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31350339

RESUMEN

High-resolution structural analysis of flexible proteins is frequently challenging and requires the synergistic application of different experimental techniques. For these proteins, small-angle X-ray scattering (SAXS) allows for a quantitative assessment and modeling of potentially flexible and heterogeneous structural states. Here, we report SAXS characterization of the condensin HEAT-repeat subunit Ycg1Cnd3 in solution, complementing currently available high-resolution crystallographic models. We show that the free Ycg1 subunit is flexible in solution but becomes considerably more rigid when bound to its kleisin-binding partner protein Brn1Cnd2 The analysis of SAXS and dynamic and static multiangle light scattering data furthermore reveals that Ycg1 tends to oligomerize with increasing concentrations in the absence of Brn1. Based on these data, we present a model of the free Ycg1 protein constructed by normal mode analysis, as well as tentative models of Ycg1 dimers and tetramers. These models enable visualization of the conformational transitions that Ycg1 has to undergo to adopt a closed rigid shape and thereby create a DNA-binding surface in the condensin complex.


Asunto(s)
Adenosina Trifosfatasas/ultraestructura , Chaetomium/ultraestructura , Proteínas de Unión al ADN/ultraestructura , Complejos Multiproteicos/ultraestructura , Difracción de Rayos X/métodos , Adenosina Trifosfatasas/metabolismo , Chaetomium/metabolismo , Proteínas de Unión al ADN/metabolismo , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Unión Proteica , Conformación Proteica , Dispersión del Ángulo Pequeño
10.
EMBO J ; 35(14): 1565-81, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27266525

RESUMEN

Condensins associate with DNA and shape mitotic chromosomes. Condensins are enriched nearby highly expressed genes during mitosis, but how this binding is achieved and what features associated with transcription attract condensins remain unclear. Here, we report that condensin accumulates at or in the immediate vicinity of nucleosome-depleted regions during fission yeast mitosis. Two transcriptional coactivators, the Gcn5 histone acetyltransferase and the RSC chromatin-remodelling complex, bind to promoters adjoining condensin-binding sites and locally evict nucleosomes to facilitate condensin binding and allow efficient mitotic chromosome condensation. The function of Gcn5 is closely linked to condensin positioning, since neither the localization of topoisomerase II nor that of the cohesin loader Mis4 is altered in gcn5 mutant cells. We propose that nucleosomes act as a barrier for the initial binding of condensin and that nucleosome-depleted regions formed at highly expressed genes by transcriptional coactivators constitute access points into chromosomes where condensin binds free genomic DNA.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cromosomas Fúngicos/metabolismo , Proteínas de Unión al ADN/metabolismo , Mitosis , Complejos Multiproteicos/metabolismo , Nucleosomas/metabolismo , Schizosaccharomyces/fisiología , Acetiltransferasas/metabolismo , Composición de Base , Proteínas de Schizosaccharomyces pombe/metabolismo , Factores de Transcripción/metabolismo
11.
Annu Rev Genet ; 43: 525-58, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19886810

RESUMEN

The cohesin complex is a major constituent of interphase and mitotic chromosomes. Apart from its role in mediating sister chromatid cohesion, it is also important for DNA double-strand-break repair and transcriptional control. The functions of cohesin are regulated by phosphorylation, acetylation, ATP hydrolysis, and site-specific proteolysis. Recent evidence suggests that cohesin acts as a novel topological device that traps chromosomal DNA within a large tripartite ring formed by its core subunits.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Animales , Cromosomas/metabolismo , ADN/metabolismo , Humanos , Modelos Biológicos , Cohesinas
12.
Bioessays ; 37(7): 755-66, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25988527

RESUMEN

How eukaryotic genomes are packaged into compact cylindrical chromosomes in preparation for cell divisions has remained one of the major unsolved questions of cell biology. Novel approaches to study the topology of DNA helices inside the nuclei of intact cells, paired with computational modeling and precise biomechanical measurements of isolated chromosomes, have advanced our understanding of mitotic chromosome architecture. In this Review Essay, we discuss - in light of these recent insights - the role of chromatin architecture and the functions and possible mechanisms of SMC protein complexes and other molecular machines in the formation of mitotic chromosomes. Based on the information available, we propose a stepwise model of mitotic chromosome condensation that envisions the sequential generation of intra-chromosomal linkages by condensin complexes in the context of cohesin-mediated inter-chromosomal linkages, assisted by topoisomerase II. The described scenario results in rod-shaped metaphase chromosomes ready for their segregation to the cell poles.


Asunto(s)
Cromosomas/ultraestructura , Mitosis , Adenosina Trifosfatasas/fisiología , Animales , Ensamble y Desensamble de Cromatina , Cromosomas/fisiología , Proteínas de Unión al ADN/fisiología , Humanos , Complejos Multiproteicos/fisiología , Nucleosomas/fisiología
13.
EMBO J ; 30(2): 364-78, 2011 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-21139566

RESUMEN

Cohesin's structural maintenance of chromosome 1 (Smc1) and Smc3 are rod-shaped proteins with 50-nm long intra-molecular coiled-coil arms with a heterodimerization domain at one end and an ABC-like nucleotide-binding domain (NBD) at the other. Heterodimerization creates V-shaped molecules with a hinge at their centre. Inter-connection of NBDs by Scc1 creates a tripartite ring within which, it is proposed, sister DNAs are entrapped. To investigate whether cohesin's hinge functions as a possible DNA entry gate, we solved the crystal structure of the hinge from Mus musculus, which like its bacterial counterpart is characterized by a pseudo symmetric heterodimeric torus containing a small channel that is positively charged. Mutations in yeast Smc1 and Smc3 that together neutralize the channel's charge have little effect on dimerization or association with chromosomes, but are nevertheless lethal. Our finding that neutralization reduces acetylation of Smc3, which normally occurs during replication and is essential for cohesion, suggests that the positively charged channel is involved in a major conformational change during S phase.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Modelos Moleculares , Animales , Western Blotting , Calorimetría , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/aislamiento & purificación , Proteoglicanos Tipo Condroitín Sulfato/aislamiento & purificación , Inmunoprecipitación de Cromatina , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/aislamiento & purificación , Cristalización , Dimerización , Inmunoprecipitación , Ratones , Microscopía Fluorescente , Reacción en Cadena de la Polimerasa , Cohesinas
14.
EMBO Rep ; 14(2): 109-11, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23318629

RESUMEN

The 106th Boehringer Ingelheim Fonds International Titisee Conference, 'Reconstituting Chromatin: From Self-assembly to Self-organization', took place in October 2012. The organizers, Andrea Musacchio and Tom Muir, brought together biologists, chemists and physicists to discuss the principles of chromosome assembly and organization. Topics of discussion ranged from new insights gained from the static views provided by crystal structures to analyses of chromatin dynamics inside living cells.


Asunto(s)
Cromatina/fisiología , Cromosomas/fisiología , Animales , Secuencia de Bases , Cromatina/química , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/fisiología , Cromosomas/química , Regulación de la Expresión Génica , Histonas/química , Histonas/fisiología , Humanos , Conformación Molecular
15.
Chromosoma ; 122(3): 175-90, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23546018

RESUMEN

The successful transmission of complete genomes from mother to daughter cells during cell divisions requires the structural re-organization of chromosomes into individualized and compact structures that can be segregated by mitotic spindle microtubules. Multi-subunit protein complexes named condensins play a central part in this chromosome condensation process, but the mechanisms behind their actions are still poorly understood. An increasing body of evidence suggests that, in addition to their role in shaping mitotic chromosomes, condensin complexes have also important functions in directing the three-dimensional arrangement of chromatin fibers within the interphase nucleus. To fulfill their different functions in genome organization, the activity of condensin complexes and their localization on chromosomes need to be strictly controlled. In this review article, we outline the regulation of condensin function by phosphorylation and other posttranslational modifications at different stages of the cell cycle. We furthermore discuss how these regulatory mechanisms are used to control condensin binding to specific chromosome domains and present a comprehensive overview of condensin's interaction partners in these processes.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cromosomas/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Adenosina Trifosfatasas/genética , Animales , División Celular , Cromosomas/genética , Proteínas de Unión al ADN/genética , Humanos , Complejos Multiproteicos/genética , Fosforilación , Unión Proteica
16.
Nature ; 454(7202): 297-301, 2008 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-18596691

RESUMEN

Sister chromatid cohesion, which is essential for mitosis, is mediated by a multi-subunit protein complex called cohesin. Cohesin's Scc1, Smc1 and Smc3 subunits form a tripartite ring structure, and it has been proposed that cohesin holds sister DNA molecules together by trapping them inside its ring. To test this, we used site-specific crosslinking to create chemical connections at the three interfaces between the three constituent polypeptides of the ring, thereby creating covalently closed cohesin rings. As predicted by the ring entrapment model, this procedure produced dimeric DNA-cohesin structures that are resistant to protein denaturation. We conclude that cohesin rings concatenate individual sister minichromosome DNA molecules.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/metabolismo , ADN Concatenado/metabolismo , ADN de Hongos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , Estructura Cuaternaria de Proteína/efectos de los fármacos , Subunidades de Proteína/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Dodecil Sulfato de Sodio/farmacología , Cohesinas
17.
Exp Cell Res ; 318(12): 1386-93, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22472347

RESUMEN

Cells use ring-like structured protein complexes for various tasks in DNA dynamics. The tripartite cohesin ring is particularly suited to determine chromosome architecture, for it is large and dynamic, may acquire different forms, and is involved in several distinct nuclear processes. This review focuses on cohesin's role in structuring chromosomes during mitotic and meiotic cell divisions and during interphase.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas Cromosómicas no Histona/fisiología , Cromosomas/química , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/genética , Cromosomas/metabolismo , Cromosomas/ultraestructura , Humanos , Interfase/genética , Interfase/fisiología , Meiosis/genética , Meiosis/fisiología , Mitosis/genética , Mitosis/fisiología , Modelos Biológicos , Conformación de Ácido Nucleico , Intercambio de Cromátides Hermanas/genética , Intercambio de Cromátides Hermanas/fisiología , Cohesinas
18.
Science ; 382(6671): 646-648, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37943927

RESUMEN

A potential mechanism of DNA loop extrusion by molecular motors is discussed.

19.
Science ; 376(6597): 1087-1094, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35653469

RESUMEN

Structural maintenance of chromosomes (SMC) protein complexes structure genomes by extruding DNA loops, but the molecular mechanism that underlies their activity has remained unknown. We show that the active condensin complex entraps the bases of a DNA loop transiently in two separate chambers. Single-molecule imaging and cryo-electron microscopy suggest a putative power-stroke movement at the first chamber that feeds DNA into the SMC-kleisin ring upon adenosine triphosphate binding, whereas the second chamber holds on upstream of the same DNA double helix. Unlocking the strict separation of "motor" and "anchor" chambers turns condensin from a one-sided into a bidirectional DNA loop extruder. We conclude that the orientation of two topologically bound DNA segments during the SMC reaction cycle determines the directionality of DNA loop extrusion.


Asunto(s)
Adenosina Trifosfatasas , Proteínas de Unión al ADN , ADN , Complejos Multiproteicos , Adenosina Trifosfatasas/química , Microscopía por Crioelectrón , ADN/química , Proteínas de Unión al ADN/química , Complejos Multiproteicos/química , Conformación de Ácido Nucleico , Imagen Individual de Molécula
20.
Angew Chem Int Ed Engl ; 50(52): 12655-8, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22095858

RESUMEN

As you like it: xCrAsH, a dimeric derivative of the arsenical compound FlAsH, enables the highly specific, covalent cross-linking of two proteins containing a 12 amino acid peptide tag. This inducible and (by addition of dithiols) reversible system can be used to detect and manipulate protein-protein interactions both in vitro and in living cells (see picture).


Asunto(s)
Arsenicales/química , Reactivos de Enlaces Cruzados/química , Fluoresceínas/química , Colorantes Fluorescentes/química , Proteínas/química , Células HeLa , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA