Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Transl Med ; 22(1): 548, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849800

RESUMEN

BACKGROUND: Despite significant advancements in treatment strategies, multiple myeloma remains incurable. Additionally, there is a distinct lack of reliable biomarkers that can guide initial treatment decisions and help determine suitable replacement or adjuvant therapies when relapse ensues due to acquired drug resistance. METHODS: To define specific proteins and pathways involved in the progression of monoclonal gammopathy of undetermined significance (MGUS) to multiple myeloma (MM), we have applied super-SILAC quantitative proteomic analysis to CD138 + plasma cells from 9 individuals with MGUS and 37 with MM. RESULTS: Unsupervised hierarchical clustering defined three groups: MGUS, MM, and MM with an MGUS-like proteome profile (ML) that may represent a group that has recently transformed to MM. Statistical analysis identified 866 differentially expressed proteins between MM and MGUS, and 189 between MM and ML, 177 of which were common between MGUS and ML. Progression from MGUS to MM is accompanied by upregulated EIF2 signaling, DNA repair, and proteins involved in translational quality control, whereas integrin- and actin cytoskeletal signaling and cell surface markers are downregulated. CONCLUSION: Compared to the premalignant plasma cells in MGUS, malignant MM cells apparently have mobilized several pathways that collectively contribute to ensure translational fidelity and to avoid proteotoxic stress, especially in the ER. The overall reduced expression of immunoglobulins and surface antigens contribute to this and may additionally mediate evasion from recognition by the immune apparatus. Our analyses identified a range of novel biomarkers with potential prognostic and therapeutic value, which will undergo further evaluation to determine their clinical significance.


Asunto(s)
Progresión de la Enfermedad , Gammopatía Monoclonal de Relevancia Indeterminada , Mieloma Múltiple , Humanos , Mieloma Múltiple/inmunología , Mieloma Múltiple/patología , Gammopatía Monoclonal de Relevancia Indeterminada/inmunología , Proteómica , Masculino , Femenino , Biosíntesis de Proteínas , Persona de Mediana Edad , Anciano , Análisis por Conglomerados , Células Plasmáticas/inmunología , Células Plasmáticas/patología , Células Plasmáticas/metabolismo , Transducción de Señal , Proteoma/metabolismo , Control de Calidad
2.
Nucleic Acids Res ; 49(7): 3948-3966, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33784377

RESUMEN

Uracil occurs at replication forks via misincorporation of deoxyuridine monophosphate (dUMP) or via deamination of existing cytosines, which occurs 2-3 orders of magnitude faster in ssDNA than in dsDNA and is 100% miscoding. Tethering of UNG2 to proliferating cell nuclear antigen (PCNA) allows rapid post-replicative removal of misincorporated uracil, but potential 'pre-replicative' removal of deaminated cytosines in ssDNA has been questioned since this could mediate mutagenic translesion synthesis and induction of double-strand breaks. Here, we demonstrate that uracil-DNA glycosylase (UNG), but not SMUG1 efficiently excises uracil from replication protein A (RPA)-coated ssDNA and that this depends on functional interaction between the flexible winged-helix (WH) domain of RPA2 and the N-terminal RPA-binding helix in UNG. This functional interaction is promoted by mono-ubiquitination and diminished by cell-cycle regulated phosphorylations on UNG. Six other human proteins bind the RPA2-WH domain, all of which are involved in DNA repair and replication fork remodelling. Based on this and the recent discovery of the AP site crosslinking protein HMCES, we propose an integrated model in which templated repair of uracil and potentially other mutagenic base lesions in ssDNA at the replication fork, is orchestrated by RPA. The UNG:RPA2-WH interaction may also play a role in adaptive immunity by promoting efficient excision of AID-induced uracils in transcribed immunoglobulin loci.


Asunto(s)
ADN Glicosilasas/metabolismo , Replicación del ADN , ADN de Cadena Simple/metabolismo , Proteína de Replicación A/metabolismo , Uracilo/metabolismo , Sitios de Unión , Humanos , Unión Proteica , Proteínas Recombinantes/metabolismo
3.
Proteomics ; 22(10): e2100223, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35170848

RESUMEN

MALDI MS imaging (MSI) is a powerful analytical tool for spatial peptide detection in heterogeneous tissues. Proper sample preparation is crucial to achieve high quality, reproducible measurements. Here we developed an optimized protocol for spatially resolved proteolytic peptide detection with MALDI time-of-flight MSI of fresh frozen prostate tissue sections. The parameters tested included four different tissue washes, four methods of protein denaturation, four methods of trypsin digestion (different trypsin densities, sprayers, and incubation times), and five matrix deposition methods (different sprayers, settings, and matrix concentrations). Evaluation criteria were the number of detected and excluded peaks, percentage of high mass peaks, signal-to-noise ratio, spatial localization, and average intensities of identified peptides, all of which were integrated into a weighted quality evaluation scoring system. Based on these scores, the optimized protocol included an ice-cold EtOH+H2 O wash, a 5 min heating step at 95°C, tryptic digestion incubated for 17h at 37°C and CHCA matrix deposited at a final amount of 1.8 µg/mm2 . Including a heat-induced protein denaturation step after tissue wash is a new methodological approach that could be useful also for other tissue types. This optimized protocol for spatial peptide detection using MALDI MSI facilitates future biomarker discovery in prostate cancer and may be useful in studies of other tissue types.


Asunto(s)
Péptidos , Próstata , Humanos , Masculino , Próstata/metabolismo , Proteínas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Tripsina/metabolismo
4.
FASEB J ; 35(7): e21714, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34118107

RESUMEN

We tested the hypothesis that cancer cachexia progression would induce oxidative post-translational modifications (Ox-PTMs) associated with skeletal muscle wasting, with different responses in muscles with the prevalence of glycolytic and oxidative fibers. We used cysteine-specific isotopic coded affinity tags (OxICAT) and gel-free mass spectrometry analysis to investigate the cysteine Ox-PTMs profile in the proteome of both plantaris (glycolytic) and soleus (oxidative) muscles in tumor-bearing and control rats. Histological analysis revealed muscle atrophy in type II fibers in plantaris muscle, with no changes in plantaris type I fibers and no differences in both soleus type I and II fibers in tumor-bearing rats when compared to healthy controls. Tumor progression altered the Ox-PTMs profile in both plantaris and soleus. However, pathway analysis including the differentially oxidized proteins revealed tricarboxylic acid cycle and oxidative phosphorylation as main affected pathways in plantaris muscle from tumor-bearing rats, while the same analysis did not show main metabolic pathways affected in the soleus muscle. In addition, cancer progression affected several metabolic parameters such as ATP levels and markers of oxidative stress associated with muscle atrophy in plantaris muscle, but not in soleus. However, isolated soleus from tumor-bearing rats had a reduced force production capacity when compared to controls. These novel findings demonstrate that tumor-bearing rats have severe muscle atrophy exclusively in glycolytic fibers. Cancer progression is associated with cysteine Ox-PTMs in the skeletal muscle, but these modifications affect different pathways in a glycolytic muscle compared to an oxidative muscle, indicating that intrinsic muscle oxidative capacity determines the response to cancer cachectic effects.


Asunto(s)
Músculo Esquelético/patología , Atrofia Muscular/patología , Neoplasias/patología , Estrés Oxidativo/fisiología , Animales , Caquexia/patología , Progresión de la Enfermedad , Glucólisis/fisiología , Masculino , Fibras Musculares de Contracción Rápida/patología , Fibras Musculares de Contracción Lenta/patología , Oxidación-Reducción , Fosforilación Oxidativa , Ratas , Ratas Wistar
5.
J Transl Med ; 19(1): 287, 2021 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-34217309

RESUMEN

BACKGROUND: Reversible enzymatic methylation of mammalian mRNA is widespread and serves crucial regulatory functions, but little is known to what degree chemical alkylators mediate overlapping modifications and whether cells distinguish aberrant from canonical methylations. METHODS: Here we use quantitative mass spectrometry to determine the fate of chemically induced methylbases in the mRNA of human cells. Concomitant alteration in the mRNA binding proteome was analyzed by SILAC mass spectrometry. RESULTS: MMS induced prominent direct mRNA methylations that were chemically identical to endogenous methylbases. Transient loss of 40S ribosomal proteins from isolated mRNA suggests that aberrant methylbases mediate arrested translational initiation and potentially also no-go decay of the affected mRNA. Four proteins (ASCC3, YTHDC2, TRIM25 and GEMIN5) displayed increased mRNA binding after MMS treatment. ASCC3 is a binding partner of the DNA/RNA demethylase ALKBH3 and was recently shown to promote disassembly of collided ribosomes as part of the ribosome quality control (RQC) trigger complex. We find that ASCC3-deficient cells display delayed removal of MMS-induced 1-methyladenosine (m1A) and 3-methylcytosine (m3C) from mRNA and impaired formation of MMS-induced P-bodies. CONCLUSIONS: Our findings conform to a model in which ASCC3-mediated disassembly of collided ribosomes allows demethylation of aberrant m1A and m3C by ALKBH3. Our findings constitute first evidence of selective sanitation of aberrant mRNA methylbases over their endogenous counterparts and warrant further studies on RNA-mediated effects of chemical alkylators commonly used in the clinic.


Asunto(s)
Citosina , Ribosomas , Adenosina/análogos & derivados , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB , Animales , Citosina/análogos & derivados , ADN Helicasas , Humanos , ARN Helicasas , ARN Mensajero/genética , Factores de Transcripción , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas
6.
Nucleic Acids Res ; 47(9): 4569-4585, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30838409

RESUMEN

UNG is the major uracil-DNA glycosylase in mammalian cells and is involved in both error-free base excision repair of genomic uracil and mutagenic uracil-processing at the antibody genes. However, the regulation of UNG in these different processes is currently not well understood. The UNG gene encodes two isoforms, UNG1 and UNG2, each possessing unique N-termini that mediate translocation to the mitochondria and the nucleus, respectively. A strict subcellular localization of each isoform has been widely accepted despite a lack of models to study them individually. To determine the roles of each isoform, we generated and characterized several UNG isoform-specific mouse and human cell lines. We identified a distinct UNG1 isoform variant that is targeted to the cell nucleus where it supports antibody class switching and repairs genomic uracil. We propose that the nuclear UNG1 variant, which in contrast to UNG2 lacks a PCNA-binding motif, may be specialized to act on ssDNA through its ability to bind RPA. RPA-coated ssDNA regions include both transcribed antibody genes that are targets for deamination by AID and regions in front of the moving replication forks. Our findings provide new insights into the function of UNG isoforms in adaptive immunity and DNA repair.


Asunto(s)
ADN Glicosilasas/genética , Reparación del ADN/genética , Cambio de Clase de Inmunoglobulina/genética , Recombinación Genética/genética , Uracil-ADN Glicosidasa/genética , Animales , Sistemas CRISPR-Cas/genética , Línea Celular , Núcleo Celular/genética , Replicación del ADN/genética , ADN de Cadena Simple/genética , Técnicas de Inactivación de Genes , Genoma/genética , Humanos , Ratones , Antígeno Nuclear de Célula en Proliferación/genética , Isoformas de Proteínas/genética , Uracilo/metabolismo
7.
J Transl Med ; 18(1): 159, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32264925

RESUMEN

BACKGROUND: HDAC inhibitors (HDACi) belong to a new group of chemotherapeutics that are increasingly used in the treatment of lymphocyte-derived malignancies, but their mechanisms of action remain poorly understood. Here we aimed to identify novel protein targets of HDACi in B- and T-lymphoma cell lines and to verify selected candidates across several mammalian cell lines. METHODS: Jurkat T- and SUDHL5 B-lymphocytes were treated with the HDACi SAHA (vorinostat) prior to SILAC-based quantitative proteome analysis. Selected differentially expressed proteins were verified by targeted mass spectrometry, RT-PCR and western analysis in multiple mammalian cell lines. Genomic uracil was quantified by LC-MS/MS, cell cycle distribution analyzed by flow cytometry and class switch recombination monitored by FACS in murine CH12F3 cells. RESULTS: SAHA treatment resulted in differential expression of 125 and 89 proteins in Jurkat and SUDHL5, respectively, of which 19 were commonly affected. Among these were several oncoproteins and tumor suppressors previously not reported to be affected by HDACi. Several key enzymes determining the cellular dUTP/dTTP ratio were downregulated and in both cell lines we found robust depletion of UNG2, the major glycosylase in genomic uracil sanitation. UNG2 depletion was accompanied by hyperacetylation and mediated by increased proteasomal degradation independent of cell cycle stage. UNG2 degradation appeared to be ubiquitous and was observed across several mammalian cell lines of different origin and with several HDACis. Loss of UNG2 was accompanied by 30-40% increase in genomic uracil in freely cycling HEK cells and reduced immunoglobulin class-switch recombination in murine CH12F3 cells. CONCLUSION: We describe several oncoproteins and tumor suppressors previously not reported to be affected by HDACi in previous transcriptome analyses, underscoring the importance of proteome analysis to identify cellular effectors of HDACi treatment. The apparently ubiquitous depletion of UNG2 and PCLAF establishes DNA base excision repair and translesion synthesis as novel pathways affected by HDACi treatment. Dysregulated genomic uracil homeostasis may aid interpretation of HDACi effects in cancer cells and further advance studies on this class of inhibitors in the treatment of APOBEC-expressing tumors, autoimmune disease and HIV-1.


Asunto(s)
Inhibidores de Histona Desacetilasas , Uracilo , Animales , Línea Celular , Cromatografía Liquida , Genómica , Inhibidores de Histona Desacetilasas/farmacología , Ratones , Proteínas Oncogénicas , Linfocitos T , Espectrometría de Masas en Tándem , Uracilo/farmacología
8.
J Proteome Res ; 18(3): 1237-1247, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30707844

RESUMEN

Extracellular vesicles are emerging as biomarkers in breast cancer. Our recent report suggested that an intracellular granular staining pattern of the extracellular matrix protein nephronectin (NPNT) in breast tumor sections correlated with a poor prognosis. Furthermore, the results showed that NPNT is localized in extracellular vesicles derived from mouse breast cancer cells. In this study, we performed proteomic analysis that revealed that several proteins, including tumor-promoting molecules, are differentially expressed in the cargo of small extracellular vesicles (sEVs) derived from NPNT-expressing mouse breast cancer cells. We also identified three different forms of NPNT at 80, 60, and 20 kDa. We report that the native form of NPNT at 60 kDa becomes further glycosylated and is detected as the 80 kDa NPNT, which may be processed by matrix metalloproteinases to a shorter form of around 20 kDa, which has not previously been described. Although both 80 and 20 kDa NPNT are detected in sEVs derived from breast cancer cells, the 20 kDa form of NPNT is concentrated in sEVs. In summary, we show that a novel truncated form of NPNT is found in sEVs derived from breast cancer cells.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Proteínas de la Matriz Extracelular/genética , Proteómica , Animales , Neoplasias de la Mama/patología , Modelos Animales de Enfermedad , Vesículas Extracelulares/genética , Vesículas Extracelulares/patología , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Glicosilación , Humanos , Ratones , Isoformas de Proteínas/genética
9.
Biochim Biophys Acta ; 1854(1): 84-90, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25448019

RESUMEN

Transient transfection of mammalian cells with plasmid expression vectors and chemical transfection reagents is widely used to study protein transport and dynamics as well as phenotypic alterations mediated by the overexpressed protein. Despite the undisputed impact of this technique, surprisingly little is known about the cellular effects mediated by the transfection process per se. Conceivably, off-target effects could have implications upon proteins or processes being studied and understanding the molecular pathways affected would add value to the interpretation of experimental observations subsequent to cell transfection. Here we have used a SILAC-based proteomic approach to study differentially expressed proteins after transfection of HeLa cells with ECFP vector using a commonly employed non-liposome based transfection reagent, Fugene®HD. Whereas the transfection reagent itself mediated minimal effects upon protein expression, 11 proteins were found to be significantly upregulated after transfection, all of which were associated with an interferon type I/II response. The upregulated proteins might potentially inflict major cellular processes such as RNA splicing, chromatin remodeling, post-translational protein modification and cell cycle control. The results were validated by western analysis as well as quantitative RT-PCR and this demonstrated that an essentially identical response was induced in HeLa by transfection using an empty pUC18 vector, which does not contain a mammalian virus promoter, as well as a liposome-based transfection reagent, Lipofectamine(TM)2000. Notably, no induction of the interferon response was observed in HEK293 cells, suggesting that these cells might be preferable to HeLa to avoid undesired off-target effects in transfection studies encompassing interferon-signaling and antiviral responses.


Asunto(s)
Plásmidos/genética , Proteoma/metabolismo , Proteómica/métodos , Transfección/métodos , Western Blotting , Isótopos de Carbono/metabolismo , Cromatografía Liquida/métodos , Expresión Génica , Células HEK293 , Células HeLa , Humanos , Marcaje Isotópico/métodos , Lípidos/química , Lisina/metabolismo , Proteoma/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masas en Tándem/métodos
11.
Plant Physiol ; 167(2): 493-506, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25489022

RESUMEN

The eukaryotic, highly conserved serine (Ser)/threonine-specific protein phosphatase 2A (PP2A) functions as a heterotrimeric complex composed of a catalytic (C), scaffolding (A), and regulatory (B) subunit. In Arabidopsis (Arabidopsis thaliana), five, three, and 17 genes encode different C, A, and B subunits, respectively. We previously found that a B subunit, B'θ, localized to peroxisomes due to its C-terminal targeting signal Ser-Ser-leucine. This work shows that PP2A C2, C5, andA2 subunits interact and colocalize with B'θ in peroxisomes. C and A subunits lack peroxisomal targeting signals, and their peroxisomal import depends on B'θ and appears to occur by piggybacking transport. B'θ knockout mutants were impaired in peroxisomal ß-oxidation as shown by developmental arrest of seedlings germinated without sucrose, accumulation of eicosenoic acid, and resistance to protoauxins indole-butyric acid and 2,4-dichlorophenoxybutyric acid. All of these observations strongly substantiate that a full PP2A complex is present in peroxisomes and positively affects ß-oxidation of fatty acids and protoauxins.


Asunto(s)
Arabidopsis/enzimología , Holoenzimas/metabolismo , Peroxisomas/enzimología , Proteína Fosfatasa 2/metabolismo , Arabidopsis/efectos de los fármacos , Dominio Catalítico , Secuencia Conservada , Evolución Molecular , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Modelos Biológicos , Mutación/genética , Oxidación-Reducción/efectos de los fármacos , Peroxisomas/efectos de los fármacos , Fenotipo , Fosforilación/efectos de los fármacos , Plantas Modificadas Genéticamente , Unión Proteica/efectos de los fármacos , Subunidades de Proteína/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo , Estrés Fisiológico/efectos de los fármacos , Sacarosa/farmacología , Triglicéridos/metabolismo
12.
Biochim Biophys Acta ; 1842(5): 734-8, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24560885

RESUMEN

Psoriasis is a chronic inflammatory skin disease with unknown aetiology. Infiltration of inflammatory cells as the initial event in the development of new psoriatic plaques together with the defined inflamed areas of such lesions argues for an immunological disease with a local production of a causal antigen. The auto-antigen Pso p27 is a protein expressed in the skin lesions. We recently demonstrated that Pso p27 is homologous to the core amino acid sequences of squamous cell carcinoma antigens 1 and 2 (SCCA1/2) and it is apparently generated from SCCA molecules by digestion with highly specific endoproteases. In this communication we demonstrate the generation of Pso p27 from SCCA1 with extracts from psoriatic scale and even more remarkably, the generation of Pso p27 from SCCA1 in the presence of mast cell associated chymase. These findings open up for new therapeutic strategies in psoriasis and probably also in other autoimmune diseases as Pso p27 epitopes have been detected in diseased tissues from patients with various chronic inflammatory diseases.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Antígenos/biosíntesis , Quimasas/metabolismo , Psoriasis/etiología , Serpinas/metabolismo , Antígenos/química , Electroforesis en Gel de Poliacrilamida , Humanos , Modelos Moleculares , Proteolisis , Proteínas Recombinantes/metabolismo
13.
Food Chem ; 446: 138863, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38428084

RESUMEN

Brewer's spent grain (BSG) is an abundant agro-industrial residue and a sustainable low-cost source for extracting proteins. The composition and functionality of BSG protein concentrates are affected by extraction conditions. This study examined the use of citric acid (CA) and HCl to precipitate BSG proteins. The resultant protein concentrates were compared in terms of their composition and functional properties. The BSG protein concentrate precipitated by CA had 10% lower protein content, 5.8% higher carbohydrate, and 5.4% higher lipid content than the sample precipitated by HCl. Hydrophilic/hydrophobic protein and saturated/unsaturated fatty acid ratios increased by 16.9% and 26.5% respectively, in the sample precipitated by CA. The formation of CA-cross-linkages was verified using shotgun proteomics and Fourier transform infrared spectroscopy. Precipitation by CA adversely affected protein solubility and emulsifying properties, while improving foaming properties. This study provides insights into the role of precipitants in modulating the properties of protein concentrates.


Asunto(s)
Proteínas de Granos , Proteínas de Granos/análisis , Ácido Clorhídrico , Grano Comestible/química
14.
Front Oncol ; 14: 1383104, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863629

RESUMEN

Introduction: Systemic and local steroid hormone levels may function as novel prognostic and predictive biomarkers in breast cancer patients. We aimed at developing a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous measurement of multiple, biologically pivotal steroid hormones in human serum and breast cancer tissue. Methods: The quantitative method consisted of liquid-liquid extraction, Sephadex LH-20 chromatography for tissue extracts, and analysis of steroid hormones by liquid-chromatography-tandem mass spectrometry. We analyzed serum and tissue steroid hormone levels in 16 and 40 breast cancer patients, respectively, and assessed their correlations with clinical parameters. Results: The method included quantification of nine steroid hormones in serum [including cortisol, cortisone, corticosterone, estrone (E1), 17ß-estradiol (E2), 17α-hydroxyprogesterone, androstenedione (A4), testosterone and progesterone) and six (including cortisone, corticosterone, E1, E2, A4, and testosterone) in cancer tissue. The lower limits of quantification were between 0.003-10 ng/ml for serum (250 µl) and 0.038-125 pg/mg for tissue (20 mg), respectively. Accuracy was between 98%-126%, intra-assay coefficient of variations (CV) was below 15%, and inter-assay CV were below 11%. The analytical recoveries for tissue were between 76%-110%. Tissue levels of E1 were positively correlated with tissue E2 levels (p<0.001), and with serum levels of E1, E2 and A4 (p<0.01). Tissue E2 levels were positively associated with serum E1 levels (p=0.02), but not with serum E2 levels (p=0.12). The levels of tissue E2 and ratios of E1 to A4 levels (an index for aromatase activity) were significantly higher in patients with larger tumors (p=0.03 and p=0.02, respectively). Conclusions: The method was convenient and suitable for a specific and accurate profiling of clinically important steroid hormones in serum. However, the sensitivity of the profile method in steroid analysis in tissue samples is limited, but it can be used for the analysis of steroids in breast cancer tissues if the size of the sample or its steroid content is sufficient.

15.
iScience ; 26(1): 105895, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36590899

RESUMEN

COVID-19 pandemic continues to remain a global health concern owing to the emergence of newer variants. Several multi-Omics studies have produced extensive evidence on host-pathogen interactions and potential therapeutic targets. Nonetheless, an increased understanding of host signaling networks regulated by post-translational modifications and their ensuing effect on the cellular dynamics is critical to expanding the current knowledge on SARS-CoV-2 infections. Through an unbiased transcriptomics, proteomics, acetylomics, phosphoproteomics, and exometabolome analysis of a lung-derived human cell line, we show that SARS-CoV-2 Norway/Trondheim-S15 strain induces time-dependent alterations in the induction of type I IFN response, activation of DNA damage response, dysregulated Hippo signaling, among others. We identified interplay of phosphorylation and acetylation dynamics on host proteins and its effect on the altered release of metabolites, especially organic acids and ketone bodies. Together, our findings serve as a resource of potential targets that can aid in designing novel host-directed therapeutic strategies.

16.
Mol Omics ; 19(7): 585-597, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37345535

RESUMEN

Photochemical internalization (PCI) is a promising new technology for site-specific drug delivery, developed from photodynamic therapy (PDT). In PCI, light-induced activation of a photosensitizer trapped inside endosomes together with e.g. chemotherapeutics, nucleic acids or immunotoxins, allows cytosolic delivery and enhanced local therapeutic effect. Here we have evaluated the photosensitizer meso-tetraphenyl chlorine disulphonate (TPCS2a/fimaporfin) in a proteome analysis of AY-27 rat bladder cancer cells in combination with the chemotherapeutic drug bleomycin (BML). We find that BLMPCI attenuates oxidative stress responses induced by BLM alone, while concomitantly increasing transcriptional repression and DNA damage responses. BLMPCI also mediates downregulation of bleomycin hydrolase (Blmh), which is responsible for cellular degradation of BLM, as well as several factors known to be involved in fibrotic responses. PCI-mediated delivery might thus allow reduced dosage of BLM and alleviate unwanted side effects from treatment, including pulmonary fibrosis.


Asunto(s)
Bleomicina , Fotoquímica , Proteómica , Neoplasias de la Vejiga Urinaria , Bleomicina/farmacología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/metabolismo , Supervivencia Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Proteínas Supresoras de Tumor/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Animales , Ratas , Línea Celular Tumoral , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética
17.
Clin Exp Med ; 23(7): 3883-3893, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37395895

RESUMEN

Metabolic reprogramming in breast cancer involves changes in steroid hormone synthesis and metabolism. Alterations in estrogen levels in both breast tissue and blood may influence carcinogenesis, breast cancer growth, and response to therapy. Our aim was to examine whether serum steroid hormone concentrations could predict the risk of recurrence and treatment-related fatigue in patients with breast cancer. This study included 66 postmenopausal patients with estrogen receptor-positive breast cancer who underwent surgery, radiotherapy, and adjuvant endocrine treatment. Serum samples were collected at six different time points [before the start of radiotherapy (as baseline), immediately after radiotherapy, and then 3, 6, 12 months, and 7-12 years after radiotherapy]. Serum concentrations of eight steroid hormones (cortisol, cortisone, 17α-hydroxyprogesterone, 17ß-estradiol, estrone, androstenedione, testosterone, and progesterone) were measured using a liquid chromatography-tandem mass spectrometry-based method. Breast cancer recurrence was defined as clinically proven relapse/metastatic breast cancer or breast cancer-related death. Fatigue was assessed with the QLQ-C30 questionnaire. Serum steroid hormone concentrations measured before and immediately after radiotherapy differed between relapse and relapse-free patients [(accuracy 68.1%, p = 0.02, and 63.2%, p = 0.03, respectively, partial least squares discriminant analysis (PLS-DA)]. Baseline cortisol levels were lower in patients who relapsed than in those who did not (p < 0.05). The Kaplan-Meier analysis showed that patients with high baseline concentrations of cortisol (≥ median) had a significantly lower risk of breast cancer recurrence than patients with low cortisol levels (

Asunto(s)
Neoplasias de la Mama , Cortisona , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Cortisona/análisis , Hidrocortisona/análisis , Recurrencia Local de Neoplasia , Esteroides , Recurrencia
18.
Sci Rep ; 13(1): 11714, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474666

RESUMEN

The year of 2020 was profoundly marked by a global pandemic caused by a strain of coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19). To control disease spread, a key strategy adopted by many countries was the regular testing of individuals for infection. This led to the rapid development of diagnostic testing technologies. In Norway, within a week, our group developed a test kit to quickly isolate viral RNA and safely detect SARS-CoV-2 infection with sensitivity comparable to available kits. Herein, the procedure employed for the detection of SARS-CoV-2 in swab samples from patients using the NTNU-COVID-19 test kit is described in detail. This procedure, based on NAxtra magnetic nanoparticles and an optimized nucleic acid extraction procedure, is robust, reliable, and straightforward, providing high-quality nucleic acids within 14 min. The NAxtra protocol is adaptable and was further validated for extraction of DNA and RNA from other types of viruses. A comparison of the protocol on different liquid handling systems is also presented. Due to the simplicity and low cost of this method, implementation of this technology to diagnose virus infections on a clinical setting would benefit health care systems, promoting sustainability.


Asunto(s)
COVID-19 , Nanopartículas de Magnetita , Ácidos Nucleicos , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Prueba de COVID-19 , ARN Viral/genética , Sensibilidad y Especificidad
19.
Sci Rep ; 13(1): 20836, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012172

RESUMEN

A cost-effective, viral nucleic acid (NA) isolation kit based on NAxtra magnetic nanoparticles was developed at the Norwegian University of Science and Technology in response to the shortage of commercial kits for isolation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA during the coronavirus disease 2019 (COVID-19) pandemic. This method showed comparable sensitivity to available kits at significantly reduced cost, making its application for other biological sources an intriguing prospect. Thus, based on this low-cost nucleic acid extraction technology, we developed a simple, low- and high-throughput, efficient method for isolation of high-integrity total NA, DNA and RNA from mammalian cell lines (monolayer) and organoids (3D-cultures). The extracted NA are compatible with downstream applications including (RT-)qPCR and next-generation sequencing. When automated, NA isolation can be performed in 14 min for up to 96 samples, yielding similar quantities to available kits.


Asunto(s)
COVID-19 , Nanopartículas de Magnetita , Animales , Humanos , ARN Viral/análisis , SARS-CoV-2/genética , ADN , Sensibilidad y Especificidad , Mamíferos/genética
20.
EMBO J ; 27(1): 51-61, 2008 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-18079698

RESUMEN

Human UNG2 is a multifunctional glycosylase that removes uracil near replication forks and in non-replicating DNA, and is important for affinity maturation of antibodies in B cells. How these diverse functions are regulated remains obscure. Here, we report three new phosphoforms of the non-catalytic domain that confer distinct functional properties to UNG2. These are apparently generated by cyclin-dependent kinases through stepwise phosphorylation of S23, T60 and S64 in the cell cycle. Phosphorylation of S23 in late G1/early S confers increased association with replication protein A (RPA) and replicating chromatin and markedly increases the catalytic turnover of UNG2. Conversely, progressive phosphorylation of T60 and S64 throughout S phase mediates reduced binding to RPA and flag UNG2 for breakdown in G2 by forming a cyclin E/c-myc-like phosphodegron. The enhanced catalytic turnover of UNG2 p-S23 likely optimises the protein to excise uracil along with rapidly moving replication forks. Our findings may aid further studies of how UNG2 initiates mutagenic rather than repair processing of activation-induced deaminase-generated uracil at Ig loci in B cells.


Asunto(s)
Ciclo Celular/fisiología , ADN Glicosilasas/metabolismo , Proteína de Replicación A/metabolismo , Secuencia de Aminoácidos , Animales , Catálisis , Bovinos , ADN Glicosilasas/química , ADN Glicosilasas/genética , Células HeLa , Humanos , Ratones , Datos de Secuencia Molecular , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína de Replicación A/fisiología , Serina/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Treonina/metabolismo , Uracilo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA