Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Mol Sci ; 23(15)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35955788

RESUMEN

Classic Galactosemia (CG) is a devastating inborn error of the metabolism caused by mutations in the GALT gene encoding the enzyme galactose-1 phosphate uridylyltransferase in galactose metabolism. Severe complications of CG include neurological impairments, growth restriction, cognitive delays, and, for most females, primary ovarian insufficiency. The absence of the GALT enzyme leads to an accumulation of aberrant galactose metabolites, which are assumed to be responsible for the sequelae. There is no treatment besides the restriction of dietary galactose, which does not halt the development of the complications; thus, additional treatments are sorely needed. Supplements have been used in other inborn errors of metabolism but are not part of the therapeutic regimen for CG. The goal of this study was to test two generally recognized as safe supplements (purple sweet potato color (PSPC) and myo-inositol (MI)) that may impact cellular pathways contributing to the complications in CG. Our group uses a GalT gene-trapped mouse model to study the pathophysiology in CG, which phenocopy many of the complications. Here we report the ability of PSPC to ameliorate dysregulation in the ovary, brain, and liver of our mutant mice as well as positive results of MI supplementation in the ovary and brain.


Asunto(s)
Galactosemias , Ipomoea batatas , Animales , Color , Femenino , Galactosa/metabolismo , Galactosemias/genética , Inositol/farmacología , Inositol/uso terapéutico , Ipomoea batatas/metabolismo , Ratones , UTP-Hexosa-1-Fosfato Uridililtransferasa/metabolismo
2.
Mol Hum Reprod ; 27(8)2021 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-34314477

RESUMEN

Mechanisms that directly control mammalian ovarian primordial follicle (PF) growth activation and the selection of individual follicles for survival are largely unknown. Follicle cells produce factors that can act as potent inducers of cellular stress during normal function. Consistent with this, we show here that normal, untreated ovarian cells, including pre-granulosa cells of dormant PFs, express phenotype and protein markers of the activated integrated stress response (ISR), including stress-specific protein translation (phospho-Serine 51 eukaryotic initiation factor 2α; P-EIF2α), active DNA damage checkpoints, and cell-cycle arrest. We further demonstrate that mRNAs upregulated in primary (growing) follicles versus arrested PFs mostly include stress-responsive upstream open reading frames (uORFs). Treatment of a granulosa cell (GC) line with the PF growth trigger tumor necrosis factor alpha results in the upregulation of a 'stress-dependent' translation profile. This includes further elevated P-eIF2α and a shift of uORF-containing mRNAs to polysomes. Because the active ISR corresponds to slow follicle growth and PF arrest, we propose that repair and abrogation of ISR checkpoints (e.g. checkpoint recovery) drives the GC cell cycle and PF growth activation (PFGA). If cellular stress is elevated beyond a threshold(s) or, if damage occurs that cannot be repaired, cell and follicle death ensue, consistent with physiological atresia. These data suggest an intrinsic quality control mechanism for immature and growing follicles, where PFGA and subsequent follicle growth and survival depend causally upon ISR resolution, including DNA repair and thus the proof of genomic integrity.


Asunto(s)
Células de la Granulosa/metabolismo , Folículo Ovárico/crecimiento & desarrollo , Estrés Oxidativo , Animales , Biomarcadores , División Celular , Línea Celular , Factor 2 Eucariótico de Iniciación/metabolismo , Femenino , Humanos , Ratones , Sistemas de Lectura Abierta , Folículo Ovárico/metabolismo , Estrés Oxidativo/genética , Fosforilación/efectos de los fármacos , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transcriptoma , Factor de Necrosis Tumoral alfa/farmacología
3.
Pediatr Res ; 80(5): 719-728, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27429203

RESUMEN

BACKGROUND: Preterm birth and respiratory support with invasive mechanical ventilation frequently leads to bronchopulmonary dysplasia (BPD). A hallmark feature of BPD is alveolar simplification. For our preterm lamb model of BPD, invasive mechanical ventilation is associated with postnatal feeding intolerance (reduced nutrition) and sedation. In contrast, preterm lambs managed by noninvasive support (NIS) have normal alveolar formation, appropriate postnatal nutrition, and require little sedation. We used the latter, positive-outcome group to discriminate the contribution of reduced nutrition vs. sedation on alveolar simplification. We hypothesized that, restricted nutrition, but not sedation with pentobarbital, contributes to impaired indices of alveolar formation in preterm lambs managed by NIS. METHODS: Preterm lambs managed by NIS for 21d were randomized into three groups: NIS control, NIS plus restricted nutrition, and NIS plus excess sedation with pentobarbital. We quantified morphological and biochemical indices of alveolar formation, as well as mesenchymal cell apoptosis and proliferation. RESULTS: Restricted nutrition impaired morphological and biochemical indices of alveolar formation, and reduced mesenchymal cell apoptosis and proliferation. Excess sedation with pentobarbital did not alter these indices, although mesenchymal cell apoptosis was less. CONCLUSION: Our results demonstrate that restricted nutrition, but not excess sedation, contributes to impaired alveolar formation during the evolution of BPD in chronically ventilated preterm lambs.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Displasia Broncopulmonar/patología , Pentobarbital/administración & dosificación , Alveolos Pulmonares/patología , Animales , Animales Recién Nacidos , Apoptosis , Restricción Calórica , Proliferación Celular , Dieta , Femenino , Edad Gestacional , Hipnóticos y Sedantes/administración & dosificación , Hipnóticos y Sedantes/efectos adversos , Pulmón/patología , Masculino , Células Madre Mesenquimatosas/metabolismo , Estado Nutricional , Pentobarbital/efectos adversos , Distribución Aleatoria , Respiración Artificial/efectos adversos , Ovinos , Oveja Doméstica , Factores de Tiempo
4.
Hum Reprod Update ; 29(2): 246-258, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36512573

RESUMEN

BACKGROUND: Hypergonadotropic hypogonadism is a burdensome complication of classic galactosemia (CG), an inborn error of galactose metabolism that invariably affects female patients. Since its recognition in 1979, data have become available regarding the clinical spectrum, and the impact on fertility. Many women have been counseled for infertility and the majority never try to conceive, yet spontaneous pregnancies can occur. Onset and mechanism of damage have not been elucidated, yet new insights at the molecular level are becoming available that might greatly benefit our understanding. Fertility preservation options have expanded, and treatments to mitigate this complication either by directly rescuing the metabolic defect or by influencing the cascade of events are being explored. OBJECTIVE AND RATIONALE: The aims are to review: the clinical picture and the need to revisit the counseling paradigm; insights into the onset and mechanism of damage at the molecular level; and current treatments to mitigate ovarian damage. SEARCH METHODS: In addition to the work on this topic by the authors, the PubMed database has been used to search for peer-reviewed articles and reviews using the following terms: 'classic galactosemia', 'gonadal damage', 'primary ovarian insufficiency', 'fertility', 'animal models' and 'fertility preservation' in combination with other keywords related to the subject area. All relevant publications until August 2022 have been critically evaluated and reviewed. OUTCOMES: A diagnosis of premature ovarian insufficiency (POI) results in a significant psychological burden with a high incidence of depression and anxiety that urges adequate counseling at an early stage, appropriate treatment and timely discussion of fertility preservation options. The cause of POI in CG is unknown, but evidence exists of dysregulation in pathways crucial for folliculogenesis such as phosphatidylinositol 3-kinase/protein kinase B, inositol pathway, mitogen-activated protein kinase, insulin-like growth factor-1 and transforming growth factor-beta signaling. Recent findings from the GalT gene-trapped (GalTKO) mouse model suggest that early molecular changes in 1-month-old ovaries elicit an accelerated growth activation and burnout of primordial follicles, resembling the progressive ovarian failure seen in patients. Although data on safety and efficacy outcomes are still limited, ovarian tissue cryopreservation can be a fertility preservation option. Treatments to overcome the genetic defect, for example nucleic acid therapy such as mRNA or gene therapy, or that influence the cascade of events are being explored at the (pre-)clinical level. WIDER IMPLICATIONS: Elucidation of the molecular pathways underlying POI of any origin can greatly advance our insight into the pathogenesis and open new treatment avenues. Alterations in these molecular pathways might serve as markers of disease progression and efficiency of new treatment options.


Asunto(s)
Galactosemias , Hipogonadismo , Infertilidad , Embarazo , Animales , Ratones , Femenino , Humanos , Galactosemias/diagnóstico , Galactosemias/genética , Galactosemias/metabolismo , Fertilidad/fisiología , Infertilidad/metabolismo , Ovario/fisiología , Hipogonadismo/complicaciones
5.
J Ovarian Res ; 15(1): 122, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36414970

RESUMEN

Primary ovarian insufficiency is characterized by accelerated loss of primordial follicles, which results in ovarian failure and concomitant menopause before age 40. About 1-3% of females in the general population are diagnosed with POI; however, greater than 80% of females with the inherited disease Classic Galactosemia will develop POI. Classic Galactosemia is caused by mutations in the GALT gene encoding the enzyme galactose-1 phosphate uridylyltransferase. While dietary restriction of galactose is lifesaving in the neonatal period, the development of complications including primary ovarian insufficiency is not mitigated. Additionally, the pattern(s) of follicle loss have not been completely characterized. The chronic accumulation of aberrant metabolites such as galactose-1-phosphate and galactitol are suspected culprits in the development of the sequelae, yet the mechanisms remain elusive.Our group uses a GalT gene-trapped mouse model to study the pathophysiology of primary ovarian insufficiency in Classic Galactosemia. We recently showed that differences in the Integrated Stress Response pathway occur in mutant ovaries that likely contribute to their primary ovarian insufficiency phenotype. Using immunofluorescent staining of histological sections of ovaries at progressive ages, we saw evidence of altered Integrated Stress Response activity in granulosa cells and primordial oocytes consistent with accelerated primordial follicle growth activation, aberrant DNA damage and/or repair, and increased cellular stress/death. Overall, our findings indicate that abnormal Integrated Stress Response in the Classic Galactosemia model ovary results in accelerated primordial follicle growth activation, sometimes referred to as "burnout." These aberrant early events help further clarify when/how the primary ovarian insufficiency phenotype arises under galactosemic conditions.


Asunto(s)
Galactosemias , Insuficiencia Ovárica Primaria , Ratones , Animales , Femenino , Humanos , Galactosemias/genética , Galactosemias/complicaciones , Galactosemias/metabolismo , Galactosa , Insuficiencia Ovárica Primaria/genética , Insuficiencia Ovárica Primaria/complicaciones , UTP-Hexosa-1-Fosfato Uridililtransferasa/genética , UTP-Hexosa-1-Fosfato Uridililtransferasa/metabolismo , Modelos Animales de Enfermedad
6.
Reprod Fertil ; 2(3): R67-R84, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-35118398

RESUMEN

Classic galactosemia is an inborn error of carbohydrate metabolism associated with early-onset primary ovarian insufficiency (POI) in young women. Our understanding of the consequences of galactosemia upon fertility and fecundity of affected women is expanding, but there are important remaining gaps in our knowledge and tools for its management, and a need for continued dialog so that the special features of the condition can be better managed. Here, we review galactosemic POI and its reproductive endocrinological clinical sequelae and summarize current best clinical practices for its management. Special consideration is given to the very early-onset nature of the condition in the pediatric/adolescent patient. Afterward, we summarize our current understanding of the reproductive pathophysiology of galactosemia, including the potential action of toxic galactose metabolites upon the ovary. Our work establishing that ovarian cellular stress reminiscent of endoplasmic reticulum (ER) stress is present in a mouse model of galactosemia, as well as work by other groups, are summarized. LAY SUMMARY: Patients with the condition of classic galactosemia need to maintain a strict lifelong diet that excludes the sugar galactose. This is due to having mutations in enzymes that process galactose, resulting in the buildup of toxic metabolic by-products of the sugar. Young women with classic galactosemia often lose the function of their ovaries very early in life (termed 'primary ovarian insufficiency'), despite adherence to a galactose-restricted diet. This means that in addition to the consequences of the disease, these women also face infertility and the potential need for hormone replacement therapy. This article summarizes current strategies for managing the care of galactosemic girls and women and also what is known of how the condition leads to early primary ovarian insufficiency.


Asunto(s)
Galactosemias , Animales , Modelos Animales de Enfermedad , Femenino , Fertilidad , Galactosa , Humanos , Ratones , Ovario
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA