Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Histochem Cell Biol ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39153130

RESUMEN

Coronavirus disease 2019 (COVID-19) reportedly affects male reproductive function by causing spermatogenesis dysfunction and suppressing testosterone secretion. However, the relationship between COVID-19 and impaired reproductive function, such as whether these effects on reproductive function are a direct effect of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection in male reproductive organs or an indirect effect of high fever, is not known. Here, we examined whether the cell entry molecules of SARS-CoV-2, namely, ACE2, NRP1, TMPRSS2, and FURIN, are expressed in the male reproductive organs using the testes and accessory gonads of macaques during the breeding season. RT-PCR expression analysis showed that the testes alone expressed all four molecules. Immunohistochemical staining of testis tissue sections revealed that ACE2 is expressed in Leydig cells and the apical region of Sertoli cells, whereas NRP1 is expressed in the cell bodies surrounding the Leydig and Sertoli cell nuclei. FURIN is mainly expressed in Leydig cells, secondary spermatocytes, and spermatids. However, TMPRSS2 immunopositive cells were not observed. Therefore, it was not possible to observe cells expressing all four molecules in the gonads and accessory gonads of male primates. These results suggest that SARS-CoV-2 is unlikely to directly affect spermatogenesis in primates or proliferate in cells of the seminiferous tubules and undergo release into the semen through the previously known ACE2-mediated infection route. However, the expression of three molecules, including ACE2, was observed in Leydig cells, suggesting that testosterone synthesis and secretion may be affected when primates, including humans, are infected with SARS-CoV-2.

2.
Ann Surg Oncol ; 31(1): 251-261, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37798554

RESUMEN

BACKGROUND: Preoperative chemotherapy/chemoradiotherapy has been generally considered for the treatment of esophageal squamous cell carcinoma (ESCC) to improve prognosis. We examined the effects of anticancer drugs on the expression of kallikrein-related peptidase 13 (KLK13), a potential ESCC prognostic marker, and its clinical relevance in patients who received chemotherapy/chemoradiotherapy for ESCC. METHODS: Overall, 105 patients with ESCC who received chemotherapy or chemoradiotherapy before esophagectomy were enrolled. The expression of KLK13 in biopsy samples obtained before chemotherapy/chemoradiotherapy and resected ESCC tumors was assessed by immunohistochemical staining. The effects of 5-fluorouracil (5-FU) and/or cisplatin (CDDP) exposure on the expressions of KLK13 and ten-eleven translocation dioxygenases (TET) in ESCC cells were examined by reverse transcription-polymerase chain reaction. RESULTS: Immunohistochemical staining of paired ESCC specimens before (biopsy samples) and after (resected specimens) chemotherapy/chemoradiotherapy demonstrated a change in KLK13 expression. KLK13 and TET2/3 transcriptions were induced when human ESCC cell lines were treated with 5-FU and/or CDDP. Among patients with KLK13-negative status before chemotherapy/chemoradiotherapy, those with KLK13-positive resected tumors had a significantly poorer prognosis than those with KLK13-negative resected tumors (p = 0.0477). By using tumor cells isolated from ESCC biopsy tissues obtained before chemotherapy/chemoradiotherapy, we established a primary culture system and detected the induction of KLK13 expression by anticancer drugs. CONCLUSIONS: Preoperative treatments alter KLK13 expression in ESCC. The conversion of KLK13 expression from a negative status in biopsy samples to a positive status in resected tumor samples is a predictor of poor prognosis. KLK13 status is a potential marker for decision making to avoid harmful chemotherapy/chemoradiotherapy in patients with ESCC.


Asunto(s)
Antineoplásicos , Dioxigenasas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Quimioradioterapia , Cisplatino/farmacología , Proteínas de Unión al ADN , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/terapia , Carcinoma de Células Escamosas de Esófago/terapia , Fluorouracilo , Calicreínas , Pronóstico , Terapia Neoadyuvante
3.
Cancer Sci ; 113(1): 195-204, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34726807

RESUMEN

Glutathione S-transferase omega 2 (GSTO2) lacks any appreciable GST activity, but it exhibits thioltransferase activity. The significance of GSTO2 in lung function has been reported; however, the precise expression and molecular function of GSTO2 in the lungs remain unclear. In the present study, we found that GSTO2 is expressed in airway basal cells, non-ciliated, columnar Clara cells, and type II alveolar cells, which have self-renewal capacity in the lungs. Contrastingly, no GSTO2 expression was observed in 94 lung squamous cell carcinoma (LSCC) samples. When human LSCC cell lines were treated with 5-aza-2'-deoxycytidine, a DNA-methyltransferase inhibitor, GSTO2 transcription was induced, suggesting that aberrant GSTO2 hypermethylation in LSCC is the cause of its downregulation. Forced GSTO2 expression in LSCC cell lines inhibited cell growth and colony formation in vitro. In a subcutaneous xenograft model, GSTO2-transfected cells formed smaller tumors in nude mice than mock-transfected cells. Upon intravenous injection into nude mice, the incidence of liver metastasis was lower in mice injected with GSTO2-transfected cells than in those injected with mock-transfected cells. In addition, GSTO2 induction suppressed the expression of ß-catenin and the oxygen consumption rate, but it did not affect the extracellular acidification rate. Furthermore, GSTO2-transfected cells displayed lower mitochondrial membrane potential than mock-transfected cells. When GSTO2-transfected cells were treated with a p38 inhibitor, ß-catenin expression and mitochondrial membrane potential were recovered. Our study indicated that the loss of GSTO2 via DNA hypermethylation contributes to the growth and progression of LSCC, probably by modulating cancer metabolism via the p38/ß-catenin signaling pathway.


Asunto(s)
Carcinoma de Células Escamosas/patología , Regulación hacia Abajo , Glutatión Transferasa/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/secundario , Neoplasias Pulmonares/patología , Animales , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral , Metilación de ADN/efectos de los fármacos , Decitabina/farmacología , Regulación hacia Abajo/efectos de los fármacos , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucólisis , Humanos , Neoplasias Hepáticas/genética , Neoplasias Pulmonares/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Fosforilación Oxidativa
4.
Biochem Biophys Res Commun ; 624: 35-39, 2022 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-35932577

RESUMEN

Cocoonase, a protein that is produced by the silkworm (Bombyx mori), is thought to specifically digest the sericin protein of the cocoon and has a high homology with trypsin. Similar to trypsin, cocoonase is folded as an inactive precursor protein which is activated by releasing the propeptide moiety. However, the mechanism responsible for the activation of its catalytic structure has not yet been determined in detail. Therefore, to investigate the activation and folding mechanism of cocoonase, recombinant cocoonase (CCN) and prococoonase (proCCN) were over-expressed in E. coli cells. Both recombinant proteins (proCCN and CCN) were expressed as inclusion bodies in E. coli cells and their folding was examined under several sets of conditions. After the refolding reactions, both of the recombinant proteins were present as the oxidized soluble forms. The proCCN protein was then auto-processed to release the propeptide region for activation. Interestingly, the CCN (CCN∗) derived from the refolded proCCN showed a much stronger protease activity than the refolded CCN from the reduced CCN in a protease assay using Bz-Arg-OEt as a substrate. In addition, the secondary structure of the refolded CCN protein was similar to that of the CCN∗ protein, as evidenced by CD measurements. These results suggest that the CCN protein becomes trapped in a molten globule-like state without the assistance of the propeptide region during the folding process. We therefore conclude that the propeptide region of CCN kinetically accelerates the folding of CCN to adopt the correct conformation of cocoonase at the final step of the folding pathway.


Asunto(s)
Bombyx , Escherichia coli , Animales , Bombyx/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Péptido Hidrolasas/metabolismo , Pliegue de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tripsina/metabolismo
5.
Molecules ; 27(22)2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-36432163

RESUMEN

Cocoonase is folded in the form of a zymogen precursor protein (prococoonase) with the assistance of the propeptide region. To investigate the role of the propeptide sequence on the disulfide-coupled folding of cocoonase and prococoonase, the amino acid residues at the degradation sites during the refolding and auto-processing reactions were determined by mass spectrometric analyses and were mutated to suppress the numerous degradation reactions that occur during the reactions. In addition, the Lys8 residue at the propeptide region was also mutated to estimate whether the entire sequence is absolutely required for the activation of cocoonase. Finally, a degradation-suppressed [K8D,K63G,K131G,K133A]-proCCN protein was prepared and was found to refold readily without significant degradation. The results of an enzyme assay using casein or Bz-Arg-OEt suggested that the mutations had no significant effect on either the enzyme activity or the protein conformation. Thus, we, herein, provide the non-degradative cocoonase protein to investigate the propeptide-mediated protein folding of the molecule. We also examined the catalytic residues using the degradation-suppressed cocoonase. The point mutations at the putative catalytic residues in cocoonase resulted in the loss of catalytic activity without any secondary structural changes, indicating that the mutated residues play a role in the catalytic activity of this enzyme.


Asunto(s)
Pliegue de Proteína , Precursores de Proteínas , Secuencia de Aminoácidos , Mutación Puntual , Mutación
6.
Ann Surg Oncol ; 28(9): 5373-5381, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33452606

RESUMEN

BACKGROUND: A previous study conducted a transcriptome analysis of paired normal and esophageal squamous cell carcinoma (ESCC) tissue samples. The results showed that the expression of serine protease 27 (PRSS27) was perturbed in tumor samples. Hence, this retrospective study aimed to validate the prognostic significance of PRSS27 in patients with preoperative treatment for ESCC. METHODS: We enrolled 86 patients who received preoperative treatment before esophagectomy for ESCC. The expression of PRSS27 in resected ESCC and biopsy tissue samples obtained before preoperative treatment was evaluated via immunostaining, and its relationship with clinicopathological features and prognosis was analyzed. RESULTS: In normal esophageal mucosa tissue samples, PRSS27 was expressed in the cytoplasm of spinous cells in the suprabasal layer and basal cells in the basal layer. Of 64 resected ESCC tissue samples, 35 (54.7%) expressed PRSS27 and 29 (45.3%) did not. Moreover, ectopic nuclear expression of PRSS27 was observed. Based on multivariate analysis, PRSS27 expression in resected tumor samples was a predictor of poor prognosis. In cases in which PRSS27 expression was observed in biopsy samples, patients with PRSS27-negative resected tumors had a better postoperative prognosis than those with PRSS27-positive resected tumors. CONCLUSIONS: PRSS27 expression in resected ESCC tissue samples is a poor prognostic factor in ESCC patients with preoperative treatment. Furthermore, conversion of PRSS27 expression from positive in biopsy samples to negative in resected tumor samples is a predictor of good prognosis in these patients. Hence, PRSS27 status is an effective tool for decision making regarding adjuvant treatment in ESCC patients.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Neoplasias de Cabeza y Cuello , Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas/terapia , Quimioradioterapia , Neoplasias Esofágicas/terapia , Carcinoma de Células Escamosas de Esófago/terapia , Humanos , Pronóstico , Estudios Retrospectivos , Serina Endopeptidasas , Serina Proteasas
7.
Carcinogenesis ; 41(7): 875-886, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-31738399

RESUMEN

Glutathione S-transferase omega 2 (GSTO2), which belongs to the superfamily of GST omega class, lacks any appreciable GST activity. Although GSTO2 exhibits thioltransferase and glutathione dehydrogenase activities, its precise expression and physiological functions are still unclear. In the present study, we found that GSTO2 is exclusively expressed in the basal cell layer in Ki67-negative non-proliferative cells in the human esophageal mucosa. GSTO2 overexpression in esophageal squamous cell carcinoma (ESCC) cell lines inhibited cell growth and colony formation, and GSTO2-transfected cells formed smaller tumors in nude mice compared with mock-transfected cells. Interestingly, GSTO2 induction suppressed the expressions of E-cadherin and ß-catenin at the cell-cell contact site. We quantified the phosphorylation levels of key proteins of MAPK signaling pathway and identified phosphorylation of p38. Additionally, HSP27, a downstream molecule of p38, was accelerated in GSTO2-transfected cells, unlike in mock-transfected cells. When GSTO2-transfected cells were treated with a p38 inhibitor, the expression of ß-catenin and the membrane localization of E-cadherin was recovered. We next examined GSTO2 expression in 61 ESCC tissues using quantitative reverse transcription polymerase chain reaction and immunostaining. The results showed that GSTO2 mRNA and protein were significantly reduced in ESCC compared with normal tissues. When human ESCC cell lines were treated with 5-aza-2'-deoxycytidine, a DNA-methyltransferase inhibitor, GSTO2 transcription was induced, suggesting that aberrant hypermethylation is the cause of the down-regulated expression. Our results indicate that GSTO2 expression inhibits the membrane localization of E-cadherin, probably by modulation of the p38 signaling pathway. Down-regulation of GSTO2 by DNA hypermethylation contributes to the growth and progression of ESCC.


Asunto(s)
Cadherinas/genética , Carcinoma de Células Escamosas de Esófago/genética , Glutatión Transferasa/genética , beta Catenina/genética , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Metilación de ADN/genética , Carcinoma de Células Escamosas de Esófago/patología , Regulación Neoplásica de la Expresión Génica/genética , Xenoinjertos , Humanos , Ratones , Transducción de Señal/genética
8.
J Reprod Dev ; 66(2): 97-104, 2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-31813919

RESUMEN

Malnutrition is one of the factors that induces reproductive disorders. However, the underlying biological processes are unclear. AMP-activated protein kinase (AMPK) is an enzyme that plays crucial role as a cellular energy sensor. In the present study, we examined the effects of AMPK activation on the transcription of the murine gonadotropin subunit genes Cga, Lhb, and Fshb, and the gonadotropin-releasing hormone receptor Gnrh-r. Real-time PCR and transcription assay using LßT2 cells demonstrated that 5-amino-imidazole carboxamide riboside (AICAR), a cell-permeable AMP analog, repressed the expression of Lhb. Next, we examined deletion mutants of the upstream region of Lhb and found that the upstream regulatory region of Lhb (-2527 to -2198 b) was responsible for the repression by AICAR. Furthermore, putative transcription factors (SP1, STAT5a, and TEF) that might mediate transcriptional control of the Lhb repression induced by AICAR were identified. In addition, it was confirmed that both AICAR and a competitive inhibitor of glucose metabolism, 2-deoxy-D-glucose, induced AMPK phosphorylation in LßT2 cells. Therefore, the upstream region of Lhb is one of the target sites for glucoprivation inducing AMPK activation. In addition, AMPK plays a role in repressing Lhb expression through the distal -2527 to -2198 b region.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Hormona Luteinizante de Subunidad beta/genética , Transcripción Genética/fisiología , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Línea Celular , Hormona Folículo Estimulante de Subunidad beta/genética , Hormona Folículo Estimulante de Subunidad beta/metabolismo , Hormona Luteinizante de Subunidad beta/metabolismo , Ratones , Fosforilación/efectos de los fármacos , Adenohipófisis/efectos de los fármacos , Adenohipófisis/metabolismo , Receptores LHRH/genética , Receptores LHRH/metabolismo , Ribonucleótidos/farmacología , Transcripción Genética/efectos de los fármacos
9.
J Reprod Dev ; 66(2): 135-141, 2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-31902805

RESUMEN

Negative energy balance in domestic animals suppresses their reproductive function. These animals commonly use long-chain fatty acids (LCFAs) from adipocytes as an energy source under states of malnutrition. The G-protein coupled receptor, GPR120, is a specific receptor for LCFAs, but its role in reproductive function remains unknown in domestic animals. The purpose of this study was to examine whether GPR120 is involved in the reproductive system of cattle. GPR120 mRNA expression was evaluated in brain, pituitary, and ovarian tissue samples by RT-PCR. GPR120 gene expression was detected with high intensity only in the anterior pituitary sample, and GPR120-immunoreactive cells were found in the anterior pituitary gland. Double immunohistochemistry of GPR120 in the anterior pituitary hormone-producing cells, such as gonadotropes, thyrotropes, lactotropes, somatotropes, and corticotropes, was performed to clarify the distribution of GPR120 in the anterior pituitary gland of ovariectomized heifers. Luteinizing hormone ß subunit (LHß)- and follicle-stimulating hormone ß subunit (FSHß)-immunoreactive cells demonstrated GPR120 immunoreactivity at 80.7% and 85.9%, respectively. Thyrotropes, lactotropes, somatotropes, and corticotropes coexpressed GPR120 at 21.1%, 5.4%, 13.6%, and 14.5%, respectively. In conclusion, the present study suggests that GPR120 in the anterior pituitary gland might mediate LCFA signaling to regulate gonadotrope functions, such as hormone secretion or production, in cattle.


Asunto(s)
Hormona Folículo Estimulante de Subunidad beta/metabolismo , Gonadotrofos/metabolismo , Hormona Luteinizante de Subunidad beta/metabolismo , Adenohipófisis/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Bovinos , Femenino , Inmunohistoquímica
10.
Exp Lung Res ; 43(3): 150-157, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28557567

RESUMEN

PURPOSE: The concentration-sensitive sodium channel (NaC) is expressed in alveolar type II epithelial cells and pulmonary microvascular endothelial cells in mouse lungs. We recently reported that NaC contributes to amiloride-insensitive sodium transport in mouse lungs (Respiratory Physiology & Neurobiology, 2016). However, details regarding its physiological role in the lung remain unknown. To examine whether NaC is involved in alveolar fluid clearance during an acute lung injury (ALI), we analyzed the relationship between NaC gene expression in the lung and the development of pulmonary edema in lipopolysaccharide (LPS)-induced ALI mice. METHODS: LPS-induced ALI mice were prepared by the intratracheal administration of LPS. Bronchoalveolar lavage (BAL) neutrophils and lung water content (LWCs) were used as a marker of ALI and pulmonary edema, respectively. NaC protein production in the lung was detected by immunoblotting and immunofluorescence. The gene expressions of NaC and the epithelial sodium channel (ENaC) of LPS-induced ALI mice were examined by quantitative RT-PCR over a time course of 14 days. RESULTS: The BAL neutrophil count increased until day 2 after LPS administration and had nearly recovered by day 6. LWCs in LPS-induced mice gradually increased until day 8 and had recovered by day 14. The expression of the NaC protein in the lungs of LPS-induced mice dramatically decreased from day 2 to day 6, but recovered by day 8. The mRNA expression of NaC decreased in the lung, as well as those for α-, ß-, and γ-ENaC during ALI. Thus, NaC expression is suppressed during the development stage of pulmonary edema and then recovers in the convalescent phase. CONCLUSION: Our results suggest that suppression of the gene expression of NaC is involved in the development of pulmonary edema in ALI.


Asunto(s)
Lesión Pulmonar Aguda/inducido químicamente , Canales Epiteliales de Sodio/análisis , Canales de Sodio/análisis , Células Epiteliales Alveolares , Animales , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Expresión Génica , Lipopolisacáridos/efectos adversos , Pulmón/metabolismo , Ratones , Alveolos Pulmonares , Edema Pulmonar
11.
J Clin Biochem Nutr ; 61(2): 100-107, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28955126

RESUMEN

Fasting-refeeding in mice induces transient hyperproliferation of colonic epithelial cells, which is dependent on the lactate produced as a metabolite of commensal bacteria. We attempted to manipulate colonic epithelial cell turnover with intermittent fasting to prompt recovery from acute colitis. Acute colitis was induced in C57BL/6 mice by administration of dextran sulfate sodium in the drinking water for 5 days. From day 6, mice were fasted for 36 h and refed normal bait, glucose powder, or lactylated high-amylose starch. On day 9, colon tissues were subjected to analysis of histology and cytokine expression. The effect of lactate on the proliferation of colonocytes was assessed by enema in vivo and primary culture in vitro. Intermittent fasting resulted in restored colonic crypts and less expression of interleukin-1ß and interleukin-17 in the colon than in mice fed ad libitum. Administration of lactate in the colon at refeeding time by enema or by feeding lactylated high-amylose starch increased the number of regenerating crypts. Addition of lactate but not butyrate or acetate supported colony formation of colonocytes in vitro. In conclusion, intermittent fasting in the resolution phase of acute colitis resulted in better recovery of epithelial cells and reduced inflammation.

12.
Cytokine ; 69(1): 14-21, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25022957

RESUMEN

Tumor necrosis factor (TNF)-α is a major effector in various inflammatory conditions. TNF-like weak inducer of apoptosis (TWEAK) is a member of the TNF superfamily that promotes inflammatory tissue damage through its receptor, FGF-inducible molecule 14 (Fn14). Since both TWEAK and TNF-α have been shown to mediate pathological responses through inter-dependent or independent pathways by in vitro, the potential interplay of these pathways was investigated in a mouse colitis model. Acute colitis was induced by rectal injection of trinitrobenzene sulfonic acid (TNBS), with administration of control IgG, TNF receptor (TNFR)-Ig chimeric protein, anti-TWEAK monoclonal antibody, or the combination of TNFR-Ig and anti-TWEAK antibody. On day 4, disease severity was evaluated and gene expression profiling was analyzed using whole colon tissue. NF-κB activation was investigated with Western blot. Levels of transcript of TWEAK, Fn14 and NF-κB-related molecules were measured in purified colon epithelial cells (ECs). As a result, activation of the canonical (p50/RelA), but not noncanonical (p100/RelB)-mediated pathway was the hallmark of inflammatory responses in this model. Inflammation induced upregulation of Fn14 only in ECs but not in other cell types. Combination treatment of TNFR-Ig and anti-TWEAK antibody synergistically reduced disease severity in comparison with the control antibody or single agent treatment. Gene expression profile of the colon indicated downregulation of canonical NF-κB pathway with combination treatment. In conclusion, synergistic activation of canonical NF-κB by TWEAK and TNF-α is critical for the induction of inflammatory tissue damage in acute inflammation.


Asunto(s)
Colitis/patología , FN-kappa B/metabolismo , Receptores del Factor de Necrosis Tumoral/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factores de Necrosis Tumoral/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Colitis/inducido químicamente , Colon/citología , Colon/patología , Citocina TWEAK , Perfilación de la Expresión Génica , Inflamación/inmunología , Inflamación/patología , Mucosa Intestinal/citología , Mucosa Intestinal/patología , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/biosíntesis , Subunidad p50 de NF-kappa B/biosíntesis , Receptores del Factor de Necrosis Tumoral/biosíntesis , Receptor de TWEAK , Factor de Transcripción ReIA/biosíntesis , Ácido Trinitrobencenosulfónico
13.
Mol Clin Oncol ; 19(2): 64, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37559880

RESUMEN

Lung squamous cell carcinoma (LSCC) is associated with poor prognosis. Molecular targeting drugs have been demonstrated to be effective for lung adenocarcinoma; however, they are often not effective for LSCC. Kallikrein-related peptidase 13 (KLK13) expression enhances the malignancy of lung adenocarcinoma; however, its expression and crucial role in LSCC remain largely unknown. The present study examined the relationship between the KLK13 expression and clinicopathological features of LSCC. A total of 94 patients diagnosed with LSCC who underwent lobectomy, segmentectomy or wedge resection were selected. KLK13 expression was evaluated through immunostaining of formalin-fixed paraffin-embedded sections of surgical specimens. Of the 94 LSCC samples, 70 exhibited no KLK13 expression, while the remaining 24 exhibited ectopic expression. KLK13 expression in tumors was focal and restricted to the cytoplasm of keratinized cells. LSCC cases were classified into KLK13-negative and KLK13-positive groups, and KLK13 expression was positively associated with E-cadherin expression (P=0.0143). Associations between KLK13 expression and keratinization (P=0.0052) or absence of lymphatic vessel invasion (P=0.0603) were observed; however, these trends did not reach statistical significance. The present findings indicated that KLK13 expression in keratinized LSCC may have a protective role in lymphatic vessel invasion of LSCC, which suggests its significance for therapeutic applications against LSCC.

14.
J Neurosci ; 31(9): 3362-74, 2011 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-21368048

RESUMEN

The number of synaptic AMPA receptors (AMPARs) is the major determinant of synaptic strength and is differently regulated in input pathway-dependent and target cell type-dependent manners. In cerebellar Purkinje cells (PCs), the density of synaptic AMPARs is approximately five times lower at parallel fiber (PF) synapses than at climbing fiber (CF) synapses. However, molecular mechanisms underlying this biased synaptic distribution remain unclear. As a candidate molecule, we focused on glutamate receptor δ2 (GluRδ2 or GluD2), which is known to be efficiently trafficked to and selectively expressed at PF synapses in PCs. We applied postembedding immunogold electron microscopy to GluRδ2 knock-out (KO) and control mice, and measured labeling density for GluA1-4 at three excitatory synapses in the cerebellar molecular layer. In both control and GluRδ2-KO mice, GluA1-3 were localized at PF and CF synapses in PCs, while GluA2-4 were at PF synapses in interneurons. In control mice, labeling density for each of GluA1-3 was four to six times lower at PF-PC synapses than at CF-PC synapses. In GluRδ2-KO mice, however, their labeling density displayed a three- to fivefold increase at PF synapses, but not at CF synapses, thus effectively eliminating input pathway-dependent disparity between the two PC synapses. Furthermore, we found an unexpected twofold increase in labeling density for GluA2 and GluA3, but not GluA4, at PF-interneuron synapses, where we identified low but significant expression of GluRδ2. These results suggest that GluRδ2 is involved in a common mechanism that restricts the number of synaptic AMPARs at PF synapses in PCs and molecular layer interneurons.


Asunto(s)
Vías Nerviosas/fisiología , Células de Purkinje/fisiología , Receptores AMPA/fisiología , Receptores de Glutamato/fisiología , Sinapsis/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Fibras Nerviosas/fisiología , Fibras Nerviosas/ultraestructura , Vías Nerviosas/ultraestructura , Células de Purkinje/ultraestructura , Receptores AMPA/ultraestructura , Receptores de Glutamato/deficiencia , Receptores de Glutamato/genética , Sinapsis/genética , Sinapsis/ultraestructura
15.
Gastroenterology ; 141(6): 2119-2129.e8, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21893119

RESUMEN

BACKGROUND & AIMS: TWEAK, a member of the tumor necrosis factor (TNF) superfamily, promotes intestinal epithelial cell injury and signals through the receptor Fn14 following irradiation-induced tissue damage and during development of colitis in mice. Interleukin (IL)-13, an effector of tissue damage in similar models, has been associated with the pathogenesis of ulcerative colitis (UC). We investigated interactions between TWEAK and IL-13 following mucosal damage in mice. METHODS: We compared patterns of gene expression in intestinal tissues from wild-type and TWEAK knockout mice following γ-irradiation. Intestinal explants from these mice were used to detect cell damage induced by IL-13 and TNF-α. Levels of messenger RNA for IL-13, TWEAK, and Fn14 were measured in mucosal samples from patients with UC. RESULTS: Based on gene expression analysis, TWEAK mediates γ-irradiation-induced epithelial cell cycle arrest and apoptosis. However, TWEAK alone did not induce damage or apoptosis of primary intestinal epithelial cells. On the other hand, exogenous IL-13 activated caspase-3 in naïve intestinal explants; this process required TWEAK, Fn14, and secretion of endogenous TNF-α which was mediated by ADAM17. Conversely, activation of caspase by exogenous TNF-α required IL-13, TWEAK, and Fn14. In mucosa from patients with UC, messenger RNA levels of IL-13, TWEAK, and Fn14 increased with level of disease severity. CONCLUSIONS: IL-13-induced damage of intestinal epithelial cells requires TWEAK, its receptor (Fn14), and TNF-α. IL-13, TNF-α, TWEAK, and Fn14 could perpetuate and aggravate intestinal inflammation in patients with UC.


Asunto(s)
Colitis Ulcerosa/patología , Regulación de la Expresión Génica/fisiología , Interleucina-13/metabolismo , Mucosa Intestinal/patología , Receptores del Factor de Necrosis Tumoral/genética , Factores de Necrosis Tumoral/genética , Animales , Muerte Celular , Colitis Ulcerosa/genética , Citocina TWEAK , Mucosa Intestinal/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/fisiología , Receptor de TWEAK , Factor de Necrosis Tumoral alfa/farmacología
16.
Birth Defects Res ; 112(16): 1253-1259, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32648687

RESUMEN

BACKGROUND: Although maternal MeHg-exposure causes hydrocephalus in the offspring of mice, its pathogenesis has not been fully explained. In the present study, we examined the issue of how maternal MeHg-exposure in mice affects ependymal ciliary movement in the offspring and whether the lateral ventricles in offspring show dilation. METHODS: Pregnant mice were given drinking water containing 0, 10, or 20 mg/L MeHg, or a single dose of 2 mg/kg MeHg. Brain slices were prepared from the offspring and the ependymal ciliary movement of ependymal cells in the third ventricle were observed by a high-speed digital camera. The dilation of the lateral ventricles in the offspring was assessed by histological examination. RESULTS: The administration of MeHg in the drinking water of pregnant mice at levels of 10 mg/L and 20 mg/L MeHg from GD10 to birth caused a significant decrease of ciliary beating frequency (CBF) in ependymal cells of the third ventricle in the weaned offspring. The ependymal ciliary movement of the weaned offspring was particularly sensitive in the case of the administration of MeHg at GD10. Moreover, there was a significant dilation of cross-sectional areas of lateral ventricles in weaned offspring from the pregnant mice that had been administered MeHg. The CBF and the cross-sectional areas of the lateral ventricles improved with time. CONCLUSIONS: These results suggest that the impairment of ependymal ciliary movement by maternal MeHg-exposure contributes to the development of hydrocephalus in the offspring.


Asunto(s)
Compuestos de Metilmercurio , Tercer Ventrículo , Animales , Cilios , Dilatación , Femenino , Humanos , Ventrículos Laterales , Exposición Materna/efectos adversos , Ratones
17.
Gastroenterology ; 135(1): 142-151.e3, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18485915

RESUMEN

BACKGROUND & AIMS: It has long been known that malignant transformation is associated with abnormal expression of carbohydrate determinants. The aim of this study was to clarify the cause of cancer-associated abnormal glycosylation in gastrointestinal (GI) cancers. METHODS: We compared the expression levels of "glyco-genes," including glycosyltransferases and glycosidases, in normal GI mucosa and in gastric and colorectal cancer cells. To examine the possibility that DNA hypermethylation contributed to the down-regulation of these genes, we treated GI cancer cells with 5-aza-2'-deoxycytidine (5-aza-dC), an inhibitor of DNA methyltransferase. RESULTS: The silencing of some of these glyco-genes, but not up-regulation of certain molecules, was observed. The Sd(a) carbohydrate was abundantly expressed in the normal GI mucosa, but its expression was significantly decreased in cancer tissues. When human colon and gastric cancer cells were treated with 5-aza-dC, cell surface expression of Sd(a) and the transcription of B4GALNT2, which catalyzes the synthesis of the Sd(a), were induced. The promoter region of the human B4GALNT2 gene was heavily hypermethylated in many of the GI cancer cell lines examined as well as in gastric cancer tissues (39 out of 78 cases). In addition, aberrant methylation of the B4GALNT2 gene was strongly correlated with Epstein-Barr virus-associated gastric carcinomas and occurred coincidentally with hypermethylation of the ST3GAL6 gene. CONCLUSIONS: Epigenetic changes in a group of glycosyltransferases including B4GALNT2 and ST3GAL6 represent a malignant phenotype of gastric cancer caused by silencing of the activity of these enzymes, which action may eventually induce aberrant glycosylation and expression of cancer-associated carbohydrate antigens.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Galactosiltransferasas/genética , Neoplasias Gastrointestinales/genética , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , N-Acetilgalactosaminiltransferasas/genética , Sialiltransferasas/genética , Anciano , Antígenos de Neoplasias/genética , Carbohidratos , Línea Celular Tumoral , Infecciones por Virus de Epstein-Barr/genética , Femenino , Galactosiltransferasas/metabolismo , Neoplasias Gastrointestinales/metabolismo , Neoplasias Gastrointestinales/patología , Perfilación de la Expresión Génica , Glicosilación , Humanos , Masculino , Persona de Mediana Edad , Regiones Promotoras Genéticas/genética , Sialiltransferasas/metabolismo , Proteína p53 Supresora de Tumor/genética , beta-Galactosida alfa-2,3-Sialiltransferasa
18.
Medicine (Baltimore) ; 97(15): e0357, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29642180

RESUMEN

We previously conducted transcriptome analysis of a paired specimen of normal and esophageal squamous cell carcinoma (ESCC) tissues and found that mRNA expression of cystatin A (CSTA), a member of the cystatin superfamily, was perturbed in tumors compared with that in the background mucosa. However, little is known about the significance of CSTA expression in ESCC.The mRNA expression of CSTA was evaluated by qRT-PCR using 28 paired frozen samples of tumor and nontumor mucosae. The protein expression of CSTA was evaluated by the immunostaining of formalin-fixed, paraffin-embedded sections of ESCC samples from 59 patients who underwent surgery, and its relationship with clinical features was analyzed.The mRNA expression of CSTA was significantly decreased in ESCC compared with that in matched normal mucosa (P < .0001). The protein expression of CSTA was limited in stratum granulosum and stratum spinosum but not in stratum basal in normal esophageal mucosa. It was reduced in all ESCC tissue samples compared with normal tissues; however, CSTA expression levels in tumors showed considerable variation. Of the 59 samples, 20 did not express CSTA, whereas 39 clearly expressed it. The expression of CSTA in tumors was significantly associated with pT classification (deeper tumor invasions) (P = .0118) and advanced TNM stages (P = .0497). In CSTA-positive tumor samples, CSTA-expressing cancer cells often expressed Ki67, a proliferation marker, which was in sharp contrast to normal mucosa, where Ki67-expressing cells were limited to the basal layer and did not express CSTA. Furthermore, CSTA expression was observed in all 22 lymph node metastases analyzed.Relatively high levels of CSTA expression in tumors were correlated with tumor progression and advanced cancer stage, including lymph node metastasis.


Asunto(s)
Carcinoma de Células Escamosas , Cistatina A , Mucosa Esofágica , Neoplasias Esofágicas , Anciano , Biomarcadores de Tumor , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Cistatina A/genética , Cistatina A/metabolismo , Progresión de la Enfermedad , Mucosa Esofágica/metabolismo , Mucosa Esofágica/patología , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Japón , Antígeno Ki-67/análisis , Metástasis Linfática/genética , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Estadificación de Neoplasias , ARN Mensajero/análisis , Estadística como Asunto
20.
Gen Thorac Cardiovasc Surg ; 66(6): 351-357, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29582368

RESUMEN

OBJECTIVE: Our previous differential transcriptome analysis between a paired specimen of normal and esophageal squamous cell carcinoma (ESCC) tissues found aberrant expression of kallikrein-related peptidase 13 (KLK13) in tumors. In this study, we evaluated the expression of KLK13 in many ESCC cases in relation with clinical features, and the prognosis. METHODS: Eighty-eight ESCC cases were subjected to immunohistological staining for KLK13 and classified into KLK13-negative and KLK13-positive groups. Difference of clinical features and the prognosis between the groups was analyzed. RESULTS: In normal esophageal mucosa, KLK13 expression was evident but limited in the stratum granulosum in all cases. By contrast, only 27 of 88 ESCC samples showed KLK13 expression, whereas the remaining 61 tumors showed no KLK13 expression. The KLK13-positive group was significantly associated with pT classification (deeper tumor invasions; P = 0.0282), pN classification (lymph node metastasis; P = 0.0163), and advanced TNM stage (P = 0.0198). In KLK13-positive samples, KLK13-expressing cells often expressed Ki67, a proliferation marker, unlike normal mucosa, in which Ki67-expressing cells were limited to the basal layer and did not express KLK13. Compared with patients with KLK13-negative group, KLK13-positive group showed poorer postoperative prognosis. CONCLUSION: Relatively high levels of KLK13 expression in ESCC were associated with cell proliferation and correlated with tumor progression, advanced cancer stage, and poor prognosis.


Asunto(s)
Carcinoma de Células Escamosas/genética , ADN de Neoplasias/genética , Mucosa Esofágica/metabolismo , Neoplasias Esofágicas/genética , Regulación Neoplásica de la Expresión Génica , Calicreínas/genética , Anciano , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/metabolismo , Mucosa Esofágica/patología , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago , Femenino , Humanos , Inmunohistoquímica , Calicreínas/biosíntesis , Masculino , Estadificación de Neoplasias , Pronóstico , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA