Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Microbiology (Reading) ; 169(11)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37990974

RESUMEN

Antibiotic persistence is a phenomenon observed when genetically susceptible cells survive long-term exposure to antibiotics. These 'persisters' are an intrinsic component of bacterial populations and stem from phenotypic heterogeneity. Persistence to antibiotics is a concern for public health globally, as it increases treatment duration and can contribute to treatment failure. Furthermore, there is a growing array of evidence that persistence is a 'stepping-stone' for the development of genetic antimicrobial resistance. Urinary tract infections (UTIs) are a major contributor to antibiotic consumption worldwide, and are known to be both persistent (i.e. affecting the host for a prolonged period) and recurring. Currently, in clinical settings, routine laboratory screening of pathogenic isolates does not determine the presence or the frequency of persister cells. Furthermore, the majority of research undertaken on antibiotic persistence has been done on lab-adapted bacterial strains. In the study presented here, we characterized antibiotic persisters in a panel of clinical uropathogenic Escherichia coli isolates collected from hospitals in the UK and Australia. We found that a urine-pH mimicking environment not only induces higher levels of antibiotic persistence to meropenem and colistin than standard laboratory growth conditions, but also results in rapid development of transient colistin resistance, regardless of the genetic resistance profile of the isolate. Furthermore, we provide evidence for the presence of multiple virulence factors involved in stress resistance and biofilm formation in the genomes of these isolates, whose activities have been previously shown to contribute to the formation of persister cells.


Asunto(s)
Infecciones por Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Humanos , Colistina/farmacología , Meropenem/farmacología , Meropenem/uso terapéutico , Escherichia coli Uropatógena/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiología , Bacterias/genética , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología
2.
Biotechnol Bioeng ; 119(10): 2743-2756, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35841264

RESUMEN

Regular monitoring and timely repair of concrete cracks are required to minimize further deterioration. Self-healing of cracks has been proposed as an alternative to the crack maintenance procedures. One of the proposed techniques is to use axenic cultures to exploit microbial-induced calcite precipitation (MICP). However, such healing agents are not cost-effective for in situ use. As the market for bio-based self-healing concrete necessitates a low-cost bio-agent, nonaxenic sulfate reducing bacterial (SRB) granules were investigated in this study through cultivation in an upflow anaerobic sludge blanket reactor. The compact granules can protect the bacteria from adverse conditions without encapsulation. This study investigated the microbial activities of SRB granules at different temperatures, pH, and chemical oxygen demand concentrations which the microbes would experience during the concrete casting and curing process. The attenuation and recovery of microbial activities were measured before and after the exposure. Moreover, the MICP yield was also tested for a possible use in self-healing bioconcrete. The results consistently showed that SRB granules were able to survive starvation, high temperature (50-60°C), and high pH (12), together with scanning electron microscope/energy dispersive spectrometry/X-ray diffraction analysis evidence. Microbial staining analysis demonstrated the formation of spores in the granules during their exposure to harsh conditions. SRB granule was thus demonstrated to be a viable self-healing nonaxenic agent for low-cost bioconcrete.


Asunto(s)
Materiales de Construcción , Sulfatos , Bacterias , Carbonato de Calcio , Materiales de Construcción/análisis , Materiales de Construcción/microbiología , Aguas del Alcantarillado/microbiología
3.
J Environ Manage ; 291: 112708, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33971511

RESUMEN

Groundwater is the dominant source of freshwater in many countries around the globe, and the deterioration in its quality by contaminants originating from anthropogenic sources raises serious concern. In this study, a scenario where groundwater is contaminated by acid mine drainage (AMD) from mining activities and/or sewage was envisaged, and the performance of a direct contact membrane distillation (DCMD) system was investigated comprehensively for different compositions of the AMD- and sewage-impacted groundwater. Regardless of the composition, MD membrane achieved 98-100% removal of metals and bulk organics, while the removal of the selected micropollutants ranged between 80 and 100%. Effective retention of contaminants by the MD led to their accumulation over time, which affected the hydraulic performance of the MD membrane by reducing the permeate flux by 29-76%. When persulfate (PS)-mediated oxidation process was integrated with the DCMD, degradation of bulk organics (50-71%) and micropollutants (50-100%) by PS reduced their accumulation. Characterisation of the fouling layer revealed the occurrence of membrane scaling that was mainly due to the deposition of iron oxide or oxyhydroxide precipitates. For an identical composition of the AMD- and sewage-impacted groundwater, flux decline was 10% less in PS-assisted DCMD as compared to that in the standalone DCMD. However, this did not prevent the formation of iron oxide scales on MD membrane during the operation of PS-assisted DCMD. This study demonstrates the long-term performance of a standalone and PS-assisted DCMD operated in continuous-flow mode to treat AMD- and sewage-impacted groundwater for the first time.


Asunto(s)
Destilación , Agua Subterránea , Membranas Artificiales , Minería , Aguas del Alcantarillado
4.
J Environ Manage ; 281: 111919, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33418384

RESUMEN

While cleaning wastewater, biological wastewater treatment processes such as membrane bioreactors (MBR) produce a significant amount of sludge that requires costly management. In the oxic-settling-anoxic (OSA) process, sludge is retained for a temporary period in side-stream reactors with low oxygen and substrate, and then it is recirculated to the main reactor. In this way, excess sludge production is reduced. We studied the influence of the rate of sludge exchange between MBR and side-stream anoxic reactors on sludge yield reduction within MBR. Two MBRs, namely, MBROSA and MBRcontrol, each coupled with separate external anoxic side-stream reactors, were run in parallel for 350 days. Unlike MBRcontrol, MBROSA had sludge exchange with the external reactors connected to it. During the investigation over a sludge interchange rate (SIR) range of 0-22%, an SIR of 11% achieved the highest sludge reduction (58%). Greater volatile solids destruction i.e., bacterial cell lysis and extracellular polymeric substance (EPS) destruction occurred at the SIR of 11%, which helped to achieve the highest sludge reduction. The enhanced volatile solids destruction was evident by the release of nutrients in the external anoxic reactors. It was confirmed that the sludge yield reduction was achieved without compromising the wastewater treatment quality, sludge settleability and hydraulic performance of the membrane in MBR.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Aguas del Alcantarillado , Reactores Biológicos , Eliminación de Residuos Líquidos , Aguas Residuales
5.
Environ Sci Technol ; 51(24): 14311-14320, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29135240

RESUMEN

In this study, we demonstrate the potential of an osmotic membrane bioreactor (OMBR)-membrane distillation (MD) hybrid system for simultaneous wastewater reuse and seawater desalination. A stable OMBR water flux of approximately 6 L m-2 h-1 was achieved when using MD to regenerate the seawater draw solution. Water production by the MD process was higher than that from OMBR to desalinate additional seawater and thus account for draw solute loss due to the reverse salt flux. Amplicon sequencing on the Miseq Illumina platform evidenced bacterial acclimatization to salinity build-up in the bioreactor, though there was a reduction in the bacterial community diversity. In particular, 18 halophilic and halotolerant bacterial genera were identified with notable abundance in the bioreactor. Thus, the effective biological treatment was maintained during OMBR-MD operation. By coupling biological treatment and two high rejection membrane processes, the OMBR-MD hybrid system could effectively remove (>90%) all 30 trace organic contaminants of significant concern investigated here and produce high quality water. Nevertheless, further study is necessary to address MD membrane fouling due to the accumulation of organic matter, particularly protein- and humic-like substances, in seawater draw solution.


Asunto(s)
Reactores Biológicos , Destilación , Aguas Residuales , Membranas Artificiales , Ósmosis , Agua de Mar , Purificación del Agua
6.
J Environ Manage ; 201: 89-109, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28651223

RESUMEN

White-rot fungi (WRF) and their ligninolytic enzymes have been investigated for the removal of a broad spectrum of trace organic contaminants (TrOCs) mostly from synthetic wastewater in lab-scale experiments. Only a few studies have reported the efficiency of such systems for the removal of TrOCs from real wastewater. Wastewater derived organic and inorganic compounds can inhibit: (i) WRF growth and their enzyme production capacity; (ii) enzymatic activity of ligninolytic enzymes; and (iii) catalytic efficiency of both WRF and enzymes. It is observed that essential metals such as Cu, Mn and Co at trace concertation (up to 1 mM) can improve the growth of WRF species, whereas non-essential metal such as Pb, Cd and Hg at 1 mM concentration can inhibit WRF growth and their enzyme production. In the case of purified enzymes, most of the tested metals at 1-5 mM concentration do not significantly inhibit the activity of laccases. Organic interfering compounds such as oxalic acid and ethylenediaminetetraacetic acid (EDTA) at 1 mM concentration are potent inhibitors of WRF and their extracellular enzymes. However, inhibitory effects induced by interfering compounds are strongly influenced by the type of WRF species as well as experimental conditions (e.g., incubation time and TrOC type). In this review, mechanisms and factors governing the interactions of interfering compounds with WRF and their ligninolytic enzymes are reviewed and elucidated. In addition, the performance of WRF and their ligninolytic enzymes for the removal of TrOCs from synthetic and real wastewater is critically summarized.


Asunto(s)
Basidiomycota , Aguas Residuales , Purificación del Agua , Lacasa , Compuestos Orgánicos
7.
J Environ Manage ; 185: 79-95, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27815004

RESUMEN

This paper critically reviews the multidimensional benefits of ozonation in wastewater treatment plants. These benefits include sludge reduction, removal of emerging trace organic contaminants (TrOC) from wastewater and sludge, and resource recovery from sludge. Literature shows that ozonation leads to sludge solubilisation, reducing overall biomass yield. Sludge solubilisation is primarily influenced by ozone dosage, which, in turn, depends on the fraction of ozonated sludge, ozone concentration, and sludge concentration. Additionally, sludge ozonation facilitates the removal of TrOCs from wastewater. On the other hand, by inducing cell lysis, ozonation increases the chemical oxygen demand (COD) and nutrient concentration of the sludge supernatant, which deteriorates effluent quality. This issue can be resolved by implementing resource recovery. Thus far, successful retrieval of phosphorous from ozonated sludge supernatant has been performed. The recovery of phosphorous and other resources from sludge could help offset the operation cost of ozonation, and give greater incentive for wastewater treatment plants to adapt this approach.


Asunto(s)
Ozono , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Análisis de la Demanda Biológica de Oxígeno , Instalaciones de Eliminación de Residuos
8.
Water Sci Technol ; 76(7-8): 1816-1826, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28991796

RESUMEN

This study demonstrates continuous enantiomeric inversion and further biotransformation of chiral profens including ibuprofen, naproxen and ketoprofen by an enzymatic membrane bioreactor (EMBR) dosed with laccase. The EMBR showed non-enantioselective transformations, with high and consistent transformation of both (R)- and (S)-ibuprofen (93 ± 6%, n = 10), but lower removals of both enantiomers of naproxen (46 ± 16%, n = 10) and ketoprofen (48 ± 17%, n = 10). Enantiomeric analysis revealed a bidirectional but uneven inversion of the profens, for example 14% inversion of (R)- to (S)- compared to 4% from (S)- to (R)-naproxen. With redox-mediator addition, the enzymatic chiral inversion of both (R)- and (S)-profens remained unchanged, although the overall conversion became enantioselective; except for (S)-naproxen, the addition of redox mediator promoted the degradation of (R)-profens only.


Asunto(s)
Reactores Biológicos , Ibuprofeno/metabolismo , Cetoprofeno/metabolismo , Naproxeno/metabolismo , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/metabolismo , Biotransformación , Ibuprofeno/química , Cetoprofeno/química , Membranas Artificiales , Naproxeno/química
9.
Water Res ; 251: 121101, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38218072

RESUMEN

Stormwater can carry pollutants accumulated on impervious surfaces in urban areas into natural water bodies in absence of stormwater quality improvement devices. Pervious concrete (PC) pavement is one of the low-impact development practices introduced for urban flooding prevention and stormwater pollution reduction. PC removes various types of water contaminants. Mechanisms contributing to the water pollution removal capacity of PC can be categorized into three groups: physical, chemical, and biological. Properties of PC such as permeability, porosity, thickness, and adsorption capacity influence removal of all contaminants, although their impact might differ depending on the pollutant properties. Chemical mechanisms include precipitation, co-precipitation, ion and ligand exchange, complexation, diffusion, and sorption. Bulk organics and nutrients are removed primarily by biodegradation. Physical filtration is the primary mechanism to retain suspended solids, although biological activities may have a minor contribution. Release of calcium (Ca2+) and hydroxide (OH-) from hardened cement elevates the effluent pH, which is an environmental concern. However, the pH elevation is also the prime contributor to heavy metals and nutrients removal through precipitation. Specific cementitious materials (e.g., Pozzolans and nanoparticles) and carbonation curing approach are recommended to control effluent pH elevation. Complexation, diffusion, ion solubility, and stability constants are other mechanisms and parameters that influence heavy metal removal. Organic matter availability, electrostatic attraction, temperature, pH, contact time, specific surface area, and roughness of PC pores contribute to the pathogen removal process. Although PC has been found promising in removing various water pollutants, limited salinity removal can be achieved due to the inherent release of Ca2+and OH- from PC.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Lluvia , Metales Pesados/química , Contaminación del Agua , Calcio , Contaminantes Químicos del Agua/química , Agua
10.
Waste Manag ; 185: 1-9, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38815529

RESUMEN

Quality assurance of a recycled product is currently one of the biggest issues that the plastic recycling industry faces. The purity of the input plastic waste stream has significant influence over the quality of the recycled product. This research evaluated the impact of polylactic acid (PLA) contamination within the input waste stream of high-density polyethylene (HDPE) recycling. The ultimate tensile strength was noted to reduce by 50% when PLA contamination was at 10%. An investigation into the effect that UVA radiation (simulating solar radiation) has on HDPE contaminated with PLA was also performed to determine the long-term effect of the bioplastic contamination. After UVA treatment, the ultimate tensile strength was reported to reduce by 51% when PLA contamination was only at 2.5%. A water contact angle analysis indicated the PLA contamination increased the hydrophilic nature of the HDPE sheets, potentially creating issues if the intended use of the recycled product was to store liquids. Microscopic analysis of the HDPE sheets contaminated with PLA showed deformations, ridges, cracks, and holes appear on the surface due to the immiscibility of the two polymers that was confirmed by FTIR analysis. Colour changes were visibly noted, with UVA exposure increasing the rate of colour change. Based on the findings in this study, PLA contamination of even 1% in a HDPE waste stream would significantly reduce the quality of the recycled product.


Asunto(s)
Plásticos , Poliésteres , Reciclaje , Reciclaje/métodos , Polietileno/química , Rayos Ultravioleta , Resistencia a la Tracción
11.
Sci Total Environ ; 949: 175079, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39094658

RESUMEN

Extended-spectrum ß-lactamases (ESBLs)-producing E. coli have been proposed as an indicator bacterium for antimicrobial resistance (AMR) surveillance within a OneHealth framework. However, it is important to understand the effects and potential biases ESBL-selection has on E. coli populations. Utilising whole genome sequencing, this study compared 80 ESBL-selected E. coli isolates with 201 non-selected isolates from Australian wastewater. The findings revealed significant variations between these cohorts in genetic diversity, AMR profiles, and carriage of virulence-associated genes (VAGs), plasmids, and the transmissible Locus of Stress Tolerance (tLST), a genomic island that imparts resistance to extreme heat and chlorination. The study highlights the predominance of certain sequence types (STs), particularly ST131 (75 % clade A), in ESBL-selected isolates (40 % vs 2 %) and overall the ESBL-selected isolates were largely multidrug-resistant (MDR), predominantly carrying genes for resistance to aminoglycosides, extended-spectrum ß-lactams, fluoroquinolone, macrolides, sulphonamides/trimethoprim, and tetracyclines. The ESBLs identified were almost exclusively blaCTX-M genes, most commonly blaCTX-M-15 > blaCTX-M-27 > blaCTX-M-14. These were predominately carried on IncF plasmids or chromosomally (always ISEcp1 associated), in equal numbers. In contrast, 80 % of non-selected isolates carried no acquired ARGs, and none carried blaCTX-M genes. In both cohorts, extraintestinal pathogenic E. coli (ExPEC) was the dominate pathotype (35 % total) with few (4 % total) intestinal pathogenic E. coli pathotypes identified (aEPEC > ETEC > EAEC). Nevertheless, some clinically important genes were only identified in the non-selected group, namely tigecycline-resistance gene tet(X4) and AmpC ESBL blaCMY-2. Additionally, the presence of tLST, associated with higher metal resistance gene carriage (Ag, As, Cu, Hg, Ni), in a substantial portion of non-selected isolates (20 % vs 0 %), underscores environmental pressures shaping bacterial populations in wastewater ecosystems. These insights are important for developing comprehensive, less biased genomic surveillance strategies to understand and manage public health threats posed by pathogenic E. coli and AMR.


Asunto(s)
Escherichia coli , Aguas Residuales , beta-Lactamasas , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Aguas Residuales/microbiología , Australia , beta-Lactamasas/genética , Virulencia/genética , Antibacterianos/farmacología , Genómica , Farmacorresistencia Bacteriana/genética
12.
Chemosphere ; 350: 140978, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38135125

RESUMEN

In this study, the performance of standalone ultraviolet (UV) photolysis and UV-based advanced oxidation processes (AOPs), namely, UV/hydrogen peroxide, UV/chlorine, UV/persulphate, and UV/permonosulphate, were investigated for the degradation of 31 trace organic contaminants (TrOCs). Under the tested conditions, standalone UV photolysis did not achieve effective removal of TrOCs. To improve the degradation efficiency of UV photolysis, four different oxidants were added individually to the test solution. The effect of these oxidants in the absence of UV irradiation was also explored and only chlorine showed promising degradation of some contaminants. During the chlorination of 31 investigated TrOCs, only six demonstrated greater than 50% degradation. The combined UV-based AOPs demonstrated much improved degradation (ranging from 65 to 100%) depending on TrOC-structure and oxidant concentration. The UV/hydrogen peroxide process showed similar degradation of TrOCs, irrespective of the functional groups (i.e., electron withdrawing groups, EWGs and electron donating groups, EDGs) present in their structures. Conversely, the UV/sulphate and UV/chlorine based processes achieved better degradation of the TrOCs with EDGs in their structures. TrOCs degradation improved up to 40% when oxidants concentrations were increased from 0.1 to 1 mM, and further increasing the concentration to 2 mM did not improve degradation. Toxicity evaluation using bioluminescence test (BLT assay) demonstrated that except for UV/hydrogen peroxide, all UV-based AOPs increased the toxicity of the treated effluent, indicating generation of toxic by-products. This study elucidates the performance of four different UV-based AOPs for the removal of commonly detected diverse TrOCs for the first time.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Peróxido de Hidrógeno/química , Cloro , Contaminantes Químicos del Agua/análisis , Oxidantes , Oxidación-Reducción , Fotólisis , Rayos Ultravioleta
13.
J Environ Manage ; 119: 173-81, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23500020

RESUMEN

This study investigated the removal of trace organic contaminants by a combined membrane bioreactor - granular activated carbon (MBR-GAC) system over a period of 196 days. Of the 22 compounds investigated here, all six hydrophilic compounds with electron-withdrawing functional groups (i.e., metronidazole, carbamazepine, ketoprofen, naproxen, fenoprop and diclofenac) exhibited very low removal efficiency by MBR-only treatment. GAC post-treatment initially complemented MBR treatment very well; however, a compound-specific gradual deterioration of the removal of the above-mentioned problematic compounds was noted. While a 20% breakthrough of all four negatively charged compounds namely ketoprofen, naproxen, fenoprop and diclofenac occurred within 1000-3000 bed volumes (BV), the same level of breakthrough of the two neutral compounds metronidazole and carbamazepine did not occur until 11,000 BV. Single-solute isotherm parameters did not demonstrate any discernible correlation individually with any of the parameters that may govern adsorption onto GAC, such as log D, number of hydrogen-bond donor/acceptor groups, dipole moment or aromaticity ratio of the compounds. The isotherm data, however, could differentiate the breakthrough behaviour between negatively charged and neutral trace organic contaminants.


Asunto(s)
Reactores Biológicos , Carbón Orgánico/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Adsorción , Interacciones Hidrofóbicas e Hidrofílicas , Factores de Tiempo
14.
Water Sci Technol ; 67(6): 1216-23, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23508144

RESUMEN

The resistance of certain anthropogenic trace organic contaminants (TrOCs) to conventional wastewater treatment and their potential adverse effects on human and ecological health raise significant concerns and have prompted research on their bioremediation by white-rot fungi. This study compared the removal efficiencies of four widespread TrOCs: carbamazepine (CBZ), sulfamethoxazole (SMX), bisphenol A (BPA) and diclofenac (DCF), by nitrifying activated sludge as well as whole-cell and extracellular enzyme (laccase) extract of the white-rot fungus Trametes versicolor. Fungal whole-cell culture removed only BPA and DCF but with high efficiencies (>90%) while the mixed nitrifying culture removed all compounds, although by levels of only 5-40%. Rapid initial sorption on fungal mycelium (44 ± 13% for DCF) was observed; however, biodegradation governed the overall removal. Performance comparison between fungal whole-cell and extracellular extract revealed that, unlike BPA, a catalytic pathway independent of extracellular laccase was responsible for DCF removal. Addition of mediator (1-hydroxybenzotriazole) to extracellular extract improved the removal of SMX which bears an electron donor group, but not that of the resistant compound CBZ.


Asunto(s)
Biodegradación Ambiental , Contaminantes Ambientales/aislamiento & purificación , Nitrificación , Aguas del Alcantarillado/química , Trametes/enzimología
15.
Bioengineered ; 14(1): 2244754, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37553794

RESUMEN

Over the years, it has become evident that microplastics are one of the most important contaminants of concern requiring significant attention. The large abundance of microplastics that are currently in the environment poses potential toxicity risks to all organisms that are exposed to them. Microplastics have been found to affect the physiological and biological processes in marine and terrestrial organisms. As well as being a contaminant of concern in itself, microplastics also have the ability to act as vectors for other contaminants. The potential for microplastics to carry pollutants and transfer them to other organisms has been documented in the literature. Microplastics have also been linked to hosting antibiotic resistant bacteria and antibiotic resistance genes which poses a significant risk to the current health system. There has been a significant increase in research published surrounding the topic of microplastics over the last 5 years. As such, it is difficult to determine and find up to date and relevant information. This overview paper aims to provide a snapshot of the current and emerging sources of microplastics, how microplastics can act as a contaminant and have toxic effects on a range of organisms and also be a vector for a large variety of other contaminants of concern. The aim of this paper is to act as a tool for future research to reference relevant and recent literature in this field.


Asunto(s)
Microplásticos , Microplásticos/química , Humanos , Contaminantes Ambientales/química , Bibliometría , Monitoreo del Ambiente
16.
Water Res ; 233: 119790, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36870107

RESUMEN

Microplastics as vectors for contaminants in the environment is becoming a topic of public interest. Microplastics have been found to actively adsorb heavy metals, per-fluorinated alkyl substances (PFAS), polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs), pharmaceuticals and personal care products (PPCPs) and polybrominated diethers (PBDs) onto their surface. Particular interest in microplastics capacity to adsorb antibiotics needs further attention due to the potential role this interaction plays on antibiotic resistance. Antibiotic sorption experiments have been documented in the literature, but the data has not yet been critically reviewed. This review aims to comprehensively assess the factors that affect antibiotic sorption onto microplastics. It is recognised that the physico- chemical properties of the polymers, the antibiotic chemical properties, and the properties of the solution all play a crucial role in the antibiotic sorption capacity of microplastics. Weathering of microplastics was found to increase the antibiotic sorption capacity by up to 171%. An increase in solution salinity was found to decrease the sorption of antibiotics onto microplastics, in some instances by 100%. pH also has a substantial effect on sorption capacity, illustrating the significance of electrostatic interactions on the sorption of antibiotics onto microplastics. The need for a uniform experimental design when testing antibiotic sorption is highlighted to remove inconsistencies in the data currently presented. Current literature examines the link between antibiotic sorption and antibiotic resistance, however, further studies are still required to fully understand this emerging global crisis.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos/química , Antibacterianos , Agua , Adsorción , Contaminantes Químicos del Agua/química
17.
Membranes (Basel) ; 13(8)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37623805

RESUMEN

In this study, polyethersulfone (PES) ultrafiltration (UF) membranes were modified with GO, Ag, ZnO, Ag-GO and ZnO-GO nanoparticles to improve carbamazepine removal and fouling prevention by making membrane surfaces more hydrophilic. The fabricated membranes were characterized for surface and cross-sectional morphology, surface roughness and zeta potential, as well as hydrophilicity, functional groups, surface tension parameters and water permeability Thereafter, the membranes were evaluated for their efficiency in removing MgSO4 and carbamazepine as well as antifouling properties. To understand the role of affinity interactions in rejection and fouling, membrane-solute adhesion energies (∆Gslm) were quantified based on the Lifshitz-van der Waals/acid-base method. Unlike previous studies, which have generalized fouling prevention to be due to improvements in hydrophilicity upon adding nanoparticles, this work further explored the role of surface tension components on rejection and fouling prevention. The addition of nanoparticles improved membrane hydrophilicity (77-62°), water permeability (11.9-17.7 Lm-2 h-1 bar-1), mechanical strength (3.46-4.11 N/mm2), carbamazepine rejection (30-85%) and fouling prevention (60-23% flux decline). Rejection and antifouling properties increased as ∆Gslm became more repulsive (i.e., less negative). Membrane modification reduced irreversible fouling, and the fouled membranes were cleaned by flushing with water. Fouling related more to membrane electron donor components (γ-), while the roles of electron acceptor (γ+) and Lifshitz-van der Waals components (γLW) were less important. This work provides more insights into the role of affinity interactions in rejection and fouling and how rejection and fouling mechanisms change with nanoparticle addition.

18.
Environ Pollut ; 334: 122226, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37479173

RESUMEN

To move towards a circular society, the recyclability potential of littered plastics should be explored to provide potential value for a product that is typically destined for landfill or incineration. This study aims to understand the changes in physical, mechanical, and chemical properties of four types of plastics (polyethylene terephthalate (PET), polypropylene (PP), polycarbonate (PC) and polylactic acid (PLA) after simulated environmental degradation. Plastic samples were subjected to different water matrices (in an attempt to simulate terrestrial, ocean, and river environments) to understand the role the environment plays on plastic degradation. Significant physical, mechanical, and chemical changes were observed for the PET, PP and PLA samples. Flakes and cracks were noted during the scanning electron microscopy (SEM) analysis of PET, PP and PLA illustrating the surface degradation that had occurred. Colour scanning of the samples provided complementary information about their suitability for upcycling or downcycling. Both PET and PP had visual colour changes, making them unsuitable for upcycling purposes. PLA had a significant decrease in its tensile strength in all environmental conditions, alongside significant chemical and surface change as revealed by Fourier-transform infrared (FTIR) and SEM analysis, respectively. PC had little to no changes in its chemical, mechanical, and physical properties due to high resistance to solar (UVA) degradation in presence of salt and natural organic matter in the form of humic acid. Therefore, out of the four types of plastics tested, PC was the only plastic determined to have good upcycling potential if collected from the environment. However, PET and PP could still be recycled into lower value products (i.e., construction materials).


Asunto(s)
Plásticos , Polipropilenos , Plásticos/química , Tereftalatos Polietilenos , Instalaciones de Eliminación de Residuos , Reciclaje
19.
Sci Total Environ ; 902: 166090, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37553052

RESUMEN

This study casts light on the potential of microplastic generation during plastic recycling - an unintended consequence of the process. To date, microplastics have been detected in the wastewater and sludge from plastic recycling facilities; however, generation pathways, factors and minimisation strategies are understudied. The purpose of this study is to identify the factors affecting microplastic generation, namely, plastic type and weathering conditions. The size reduction phase, which involved the mechanical shredding of the plastic waste material, was identified to be the predominate source of microplastic generation. Material type was found to significantly affect microplastic generation rates. Focussing on the microplastic particles in the size range of 0.212-1.18 mm, polycarbonate (PC), polyethylene terephthalate (PET), polypropylene (PP), and high-density polyethylene (HDPE) generated 28,600 ± 3961, 21,093 ± 2211, 18,987 ± 752 and 6807 ± 393 particles/kg of plastic material shredded, respectively. The significant variations between different plastic types were correlated (R2 = 0.88) to the hardness of the plastic. Environmental weathering was observed to significantly affect microplastic generation rates. Generation rates increased for PC, PET, PP, and HDPE by 185.05 %, 159.80 %, 123.70 % and 121.74 %, respectively, over a six-month environmental exposure period. The results in this study confirm production of large amounts of microplastics from the plastic recycling industry through its operational processes, which may be a significant source for microplastic pollution if measures to reduce their production and removal from wastewater and sludge are not considered.

20.
Chemosphere ; 334: 139011, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37230299

RESUMEN

Nano/microplastic (NP/MP) pollution is a growing concern for the water environment. Wastewater treatment plants (WWTPs) are considered the major recipients of MP before discharging into local waterbodies. MPs enter WWTPs mainly from synthetic fibers through washing activities and personal care products. To control and prevent NP/MP pollution, it is essential to have a comprehensive understanding of their characteristics, fragmentation mechanisms, and the effectiveness of the current treatment processes used in WWTPs for NP/MP removal. Therefore, the objectives of this study are to (i) understand the detailed mapping of NP/MP in the WWTP, (ii) understand the fragmentation mechanisms of MP into NP, and (iii) investigate the removal efficiency of NP/MP by existing processes in the WWTP. This study found that fiber is the dominant shape of MP, and polyethylene, polypropylene, polyethylene terephthalate, and polystyrene are the major polymer type of MP in wastewater samples. Crack propagation and mechanical breakdown of MP due to water shear forces induced by treatment facilities (e.g., pumping, mixing, and bubbling) could be the major causes for NP generation in the WWTP. Conventional wastewater treatment processes are ineffective for the complete removal of MPs. Although these processes are capable of removing ∼95% of MPs, they tend to accumulate in sludge. Thus, a significant number of MPs may still be released into the environment from WWTPs on a daily basis. Therefore, this study suggested that using DAF process in the primary treatment unit can be an effective strategy to control MP in the initial stage before it goes to the secondary and tertiary stage.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/análisis , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA