Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Small ; 14(8)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29239103

RESUMEN

One challenge in biofabrication is to fabricate a matrix that is soft enough to elicit optimal cell behavior while possessing the strength required to withstand the mechanical load that the matrix is subjected to once implanted in the body. Here, melt electrowriting (MEW) is used to direct-write poly(ε-caprolactone) fibers "out-of-plane" by design. These out-of-plane fibers are specifically intended to stabilize an existing structure and subsequently improve the shear modulus of hydrogel-fiber composites. The stabilizing fibers (diameter = 13.3 ± 0.3 µm) are sinusoidally direct-written over an existing MEW wall-like structure (330 µm height). The printed constructs are embedded in different hydrogels (5, 10, and 15 wt% polyacrylamide; 65% poly(2-hydroxyethyl methacrylate) (pHEMA)) and a frequency sweep test (0.05-500 rad s-1 , 0.01% strain, n = 5) is performed to measure the complex shear modulus. For the rheological measurements, stabilizing fibers are deposited with a radial-architecture prior to embedding to correspond to the direction of the stabilizing fibers with the loading of the rheometer. Stabilizing fibers increase the complex shear modulus irrespective of the percentage of gel or crosslinking density. The capacity of MEW to produce well-defined out-of-plane fibers and the ability to increase the shear properties of fiber-reinforced hydrogel composites are highlighted.

2.
Small ; 14(22): e1800232, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29707891

RESUMEN

The electrohydrodynamic stabilization of direct-written fluid jets is explored to design and manufacture tissue engineering scaffolds based on their desired fiber dimensions. It is demonstrated that melt electrowriting can fabricate a full spectrum of various fibers with discrete diameters (2-50 µm) using a single nozzle. This change in fiber diameter is digitally controlled by combining the mass flow rate to the nozzle with collector speed variations without changing the applied voltage. The greatest spectrum of fiber diameters was achieved by the simultaneous alteration of those parameters during printing. The highest placement accuracy could be achieved when maintaining the collector speed slightly above the critical translation speed. This permits the fabrication of medical-grade poly(ε-caprolactone) into complex multimodal and multiphasic scaffolds, using a single nozzle in a single print. This ability to control fiber diameter during printing opens new design opportunities for accurate scaffold fabrication for biomedical applications.


Asunto(s)
Electroquímica/métodos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Tejido Adiposo/citología , Humanos , Presión , Células Madre/citología
3.
Macromol Rapid Commun ; 37(1): 93-99, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26474191

RESUMEN

A new method for fabricating hydrogels with intricate control over hierarchical 3D porosity using microfiber porogens is presented. Melt electrospinning writing of poly(ε-caprolactone) is used to create the sacrificial template leading to hierarchical structuring consisting of pores inside the denser poly(2-oxazoline) hydrogel mesh. This versatile approach provides new opportunities to create well-defined multilevel control over interconnected pores with diameters in the lower micrometer range inside hydrogels with potential applications as cell scaffolds with tunable diffusion and transport of, e.g., nutrients, growth factors or therapeutics.

4.
Mater Sci Eng C Mater Biol Appl ; 77: 883-887, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28532105

RESUMEN

The additive manufacturing of small diameter polypropylene microfibers is described, achieved using a technique termed melt electrospinning writing. Sequential fiber layering, which is important for accurate three-dimensional fabrication, was achieved with the smallest fiber diameter of 16.4±0.2µm obtained. The collector speed, temperature and melt flow rate to the nozzle were optimized for quality and minimal fiber pulsing. Of particular importance to the success of this method is appropriate heating of the collector plate, so that the electrostatically drawn filament adheres during the direct-writing process. By demonstrating the direct-writing of polypropylene, new applications exploiting the favorable mechanical, stability and biocompatible properties of this polymer are envisaged.


Asunto(s)
Polipropilenos/química , Poliésteres , Ingeniería de Tejidos , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA