Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Pediatr Res ; 92(1): 98-108, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34012027

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are short single-stranded nucleotides that can regulate gene expression. Although we previously evaluated the expression of miRNAs in pediatric dilated cardiomyopathy (DCM) by miRNA array, pathway prediction based on changes in mRNA expression has not been previously analyzed in this population. The current study aimed to determine the regulation of miRNA expression by miRNA-sequencing (miRNA-seq) and, through miRNA-sequencing (mRNA-seq), analyze their putative target genes and altered pathways in pediatric DCM hearts. METHODS: miRNA expression was determined by miRNA-seq [n = 10 non-failing (NF), n = 20 DCM]. Expression of a subset of miRNAs was evaluated in adult DCM patients (n = 11 NF, n = 13 DCM). miRNA-mRNA prediction analysis was performed using mRNA-seq data (n = 7 NF, n = 7 DCM) from matched samples. RESULTS: Expression of 393 miRNAs was significantly different (p < 0.05) in pediatric DCM patients compared to NF controls. TargetScan-based miRNA-mRNA analysis revealed 808 significantly inversely expressed genes. Functional analysis suggests upregulated pathways related to the regulation of stem cell differentiation and cardiac muscle contraction, and downregulated pathways related to the regulation of protein phosphorylation, signal transduction, and cell communication. CONCLUSIONS: Our results demonstrated a unique age-dependent regulation of miRNAs and their putative target genes, which may contribute to distinctive phenotypic characteristics of DCM in children. IMPACT: This is the first study to compare miRNA expression in the heart of pediatric DCM patients to age-matched healthy controls by RNA sequencing. Expression of a subset of miRNAs is uniquely dysregulated in children. Using mRNA-seq and miRNA-seq from matched samples, target prediction was performed. This study underscores the importance of pediatric-focused studies.


Asunto(s)
Cardiomiopatía Dilatada , MicroARNs , Adulto , Cardiomiopatía Dilatada/genética , Niño , Perfilación de la Expresión Génica , Corazón , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , Análisis de Secuencia de ARN
2.
J Mol Cell Cardiol ; 159: 28-37, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34139234

RESUMEN

AIMS: Pediatric dilated cardiomyopathy (pDCM) is characterized by unique age-dependent molecular mechanisms that include myocellular responses to therapy. We previously showed that pDCM, but not adult DCM patients respond to phosphodiesterase 3 inhibitors (PDE3i) by increasing levels of the second messenger cAMP and consequent phosphorylation of phospholamban (PLN). However, the molecular mechanisms involved in the differential pediatric and adult response to PDE3i are not clear. METHODS AND RESULTS: Quantification of serum response factor (SRF) isoforms from the left ventricle of explanted hearts showed that PDE3i treatment affects expression of SRF isoforms in pDCM hearts. An SRF isoform lacking exon 5 (SRFdel5) was highly expressed in the hearts of pediatric, but not adult DCM patients treated with PDE3i. To determine the functional consequence of expression of SRFdel5, we overexpressed full length SRF or SRFdel5 in cultured cardiomyocytes with and without adrenergic stimulation. Compared to a control adenovirus, expression of SRFdel5 increased phosphorylation of PLN, negatively affected expression of the phosphatase that promotes dephosphorylation of PLN (PP2Cε), and promoted faster calcium reuptake, whereas expression of full length SRF attenuated calcium reuptake through blunted phosphorylation of PLN. CONCLUSIONS: Taken together, these data indicate that expression of SRFdel5 in pDCM hearts in response to PDE3i contributes to improved function through regulating PLN phosphorylation and thereby calcium reuptake.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Fosforilación/fisiología , Animales , Cardiomiopatía Dilatada/metabolismo , Línea Celular , Femenino , Células HEK293 , Ventrículos Cardíacos/metabolismo , Humanos , Miocitos Cardíacos/metabolismo , Ratas , Ratas Sprague-Dawley , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Factor de Respuesta Sérica/metabolismo
3.
Am J Physiol Heart Circ Physiol ; 318(5): H1308-H1315, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32216613

RESUMEN

Noncoding RNAs (ncRNAs) are broadly described as RNA molecules that are not translated into protein. The investigation of dysregulated ncRNAs in human diseases such as cancer, neurological, and cardiovascular diseases has been under way for well over a decade. Micro-RNAs and long noncoding RNAs (lncRNAs) are the best characterized ncRNAs. These ncRNAs can have profound effects on the regulation of gene expression during cardiac development and disease. Importantly, ncRNAs are significant regulators of gene expression in several congenital heart diseases and can positively or negatively impact cardiovascular development. In this review, we focus on literature involving micro-RNAs and lncRNAs in the context of pediatric cardiovascular diseases, preclinical models of heart failure, and cardiac development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Cardiopatías Congénitas/genética , Insuficiencia Cardíaca/genética , MicroARNs/genética , Miocardio/metabolismo , ARN Largo no Codificante/genética , Animales , Corazón/embriología , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/patología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Humanos , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo
4.
Cell Signal ; 123: 111351, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39159908

RESUMEN

In autosomal dominant polycystic kidney disease (ADPKD) there is cyst growth in the kidneys that leads to chronic kidney disease often requiring dialysis or kidney transplantation. There is enhanced aerobic glycolysis (Warburg effect) in the cyst lining epithelial cells that contributes to cyst growth. The glucose mimetic, 2-Deoxy-d-glucose (2-DG) inhibits glycolysis. The effect of early and late administration of 2-DG on cyst growth and kidney function was determined in Pkd1RC/RC mice, a hypomorphic PKD model orthologous to human disease. Early administration of 2-DG resulted in decreased kidney weight, cyst index, cyst number and cyst size, but no change in kidney function. 2-DG decreased proliferation. a major mediator of cyst growth, of cells lining the cyst. Late administration of 2-DG did not have an effect on cyst growth or kidney function. To determine mechanisms of decreased proliferation, an array of mTOR and autophagy proteins was measured in the kidney. 2-DG suppressed autophagic flux in Pkd1RC/RC kidneys and decreased autophagy proteins, ATG3, ATG5 and ATG12-5. 2-DG had no effect on p-mTOR or p-S6 (mTORC1) and decreased p-AMPK. 2-DG decreased p-4E-BP1, p-c-Myc and p-ERK that are known to promote proliferation and cyst growth in PKD. 2-DG decreased p-AKTS473, a marker of mTORC2. So the role of mTORC2 in cyst growth was determined. Knockout of Rictor (mTORC2) in Pkd1 knockout mice did not change the PKD phenotype. In summary, 2-DG decreases proliferation in cells lining the cyst and decreases cyst growth by decreasing proteins that are known to promote proliferation. In conclusion, the present study reinforces the therapeutic potential of 2-DG for use in patients with ADPKD.

5.
J Cardiovasc Dev Dis ; 10(9)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37754820

RESUMEN

microRNAs (miRs) are small non-coding single-stranded RNAs that regulate gene expression. We previously evaluated expression of miRs in the cardiac tissue of children with dilated cardiomyopathy (DCM) using miRNA-seq. However, a comparative analysis of serum and cardiac miRs has not been performed in this population. The current study aimed to evaluate miR levels in the serum of pediatric DCM patients compared to healthy non-failing (NF) donor controls and investigate the association between miR levels in tissue and sera from the same pediatric DCM patients. Defining the relationship between serum and tissue miRs may allow the use of circulating miRs as surrogate markers of cardiac miRs. miR levels were investigated through miR-array in sera [n = 10 NF, n = 12 DCM] and miR-seq in tissue (n = 10 NF, n = 12 DCM). Pathway analysis was investigated using the miR enrichment analysis and annotation tool (miEAA) for the five miRs commonly dysregulated in the sera and tissue of pediatric DCM patients. Functional analysis of miRs commonly dysregulated in the sera and tissue of pediatric DCM patients suggests altered pathways related to cell growth, differentiation and proliferation, inflammation, mitochondrial function, and metabolism. These findings suggest that circulating miRs could reflect altered levels of cardiac tissue miRs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA