Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Trends Neurosci ; 32(2): 110-7, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19135730

RESUMEN

Chronic pain secondary to neuronal injury is actively and continuously modulated at multiple locations along the sensory neuraxis. Here, we describe how nociceptive neurons of the spinal cord and thalamus process and communicate nociceptive information in terms of precisely calibrated firing patterns. We then discuss how several cell types with immunogenic properties (e.g. blood cells and glia) cause system-wide interference in nociceptive processing through novel signaling schema, thus contributing to nociceptive network plasticity and chronic pain.


Asunto(s)
Sistema Nervioso Central/fisiología , Red Nerviosa/fisiología , Neuroinmunomodulación/fisiología , Nociceptores/fisiología , Dolor/fisiopatología , Animales , Sistema Nervioso Central/citología , Gliosis/inmunología , Gliosis/fisiopatología , Humanos , Activación de Linfocitos/inmunología , Microglía/inmunología , Plasticidad Neuronal/fisiología , Transducción de Señal/fisiología
2.
Brain Res Rev ; 60(1): 202-13, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19154757

RESUMEN

Not all spinal contusions result in mechanical allodynia, in which non-noxious stimuli become noxious. The studies presented use the NYU impactor at 12.5 mm drop or the Infinite Horizons Impactor (150 kdyn, 1 s dwell) devices to model spinal cord injury (SCI). Both of these devices and injury parameters, if done correctly, will result in animals with above level (forelimb), at level (trunk) and below level (hindlimb) mechanical allodynia that model the changes in evoked somatosensation experienced by the majority of people with SCI. The sections are as follows: 1) Mechanisms of remote microglial activation and pain signaling in "below-level" central pain 2) Intracellular signaling mechanisms in central sensitization in "at-level" pain 3) Peripheral sensitization contributes to "above level" injury pain following spinal cord injury and 4) Role of reactive oxygen species in central sensitization in regional neuropathic pain following SCI. To summarize, differential regional mechanisms contribute to the regional chronic pain states. We propose the importance of understanding the mechanisms in the differential regional pain syndromes after SCI in the chronic condition. Targeting regional mechanisms will be of enormous benefit to the SCI population that suffer chronic pain, and will contribute to better treatment strategies for other chronic pain syndromes.


Asunto(s)
Hiperalgesia/fisiopatología , Dolor Intratable/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología , Médula Espinal/fisiopatología , Quimiocina CCL21/metabolismo , Gliosis/etiología , Gliosis/fisiopatología , Hiperalgesia/etiología , Inflamación/etiología , Inflamación/fisiopatología , Microglía/metabolismo , Estrés Oxidativo/fisiología , Dolor Intratable/etiología , Especies Reactivas de Oxígeno/metabolismo , Traumatismos de la Médula Espinal/complicaciones
3.
J Neurosci ; 28(49): 13173-83, 2008 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-19052208

RESUMEN

Localized increases in synaptic strength constitute a synaptic basis for learning and memory in the CNS and may also contribute to the maintenance of neuropathic pain after spinal cord injury (SCI) through the de novo formation or elaboration of postsynaptic dendritic structures. To determine whether SCI-induced dendritic spine remodeling contributes to neuronal hyperexcitability and neuropathic pain, we analyzed spine morphometry, localization, and functional influence in dorsal horn (DH) neurons in adult rats 1 month after sham surgery, contusion SCI, and SCI treated with a selective inhibitor of Rac1 activation, NSC23766. After SCI, DH neurons located in lamina IV-V exhibited increased spine density, redistributed spines, and mature spines compared with control neurons, which was associated with enhancement of EPSCs in computer simulations and hyperexcitable responsiveness to innocuous and noxious peripheral stimuli in unit recordings in vivo. SCI animals also exhibited symptoms of tactile allodynia and thermal hyperalgesia. Inhibition of the small GTP-binding protein Rac1 ameliorated post-SCI changes in spine morphology, attenuated injury-induced hyperexcitability of wide-dynamic range neurons, and progressively increased pain thresholds over a 3 d period. This suggests that Rac1 is an important intracellular signaling molecule involved in a spinal dendritic spine pathology associated with chronic neuropathic pain after SCI. Our report provides robust evidence for a novel conceptual bridge between learning and memory on the one hand, and neuropathic pain on the other.


Asunto(s)
Espinas Dendríticas/metabolismo , Memoria/fisiología , Neuralgia/metabolismo , Plasticidad Neuronal/fisiología , Traumatismos de la Médula Espinal/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Potenciales de Acción/fisiología , Animales , Simulación por Computador , Espinas Dendríticas/ultraestructura , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Inhibidores Enzimáticos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatología , Aprendizaje/fisiología , Masculino , Neuralgia/fisiopatología , Dimensión del Dolor , Umbral del Dolor/fisiología , Células del Asta Posterior/metabolismo , Células del Asta Posterior/ultraestructura , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/fisiopatología , Transmisión Sináptica/fisiología , Proteína de Unión al GTP rac1/antagonistas & inhibidores
4.
J Neurophysiol ; 102(4): 2396-409, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19692517

RESUMEN

Central sensitization, a prolonged hyperexcitability of dorsal horn nociceptive neurons, is a major contributor to abnormal pain processing after spinal cord injury (SCI). Dendritic spines are micron-sized dendrite protrusions that can regulate the efficacy of synaptic transmission. Here we used a computational approach to study whether changes in dendritic spine shape, density, and distribution can individually, or in combination, adversely modify the input-output function of a postsynaptic neuron to create a hyperexcitable neuronal state. The results demonstrate that a conversion from thin-shaped to more mature, mushroom-shaped spine structures results in enhanced synaptic transmission and fidelity, improved frequency-following ability, and reduced inhibitory gating effectiveness. Increasing the density and redistributing spines toward the soma results in a greater probability of action potential activation. Our results demonstrate that changes in dendritic spine morphology, documented in previous studies on spinal cord injury, contribute to the generation of pain following SCI.


Asunto(s)
Espinas Dendríticas/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Transmisión Sináptica/fisiología , Potenciales de Acción , Animales , Membrana Celular/fisiología , Simulación por Computador , Masculino , Modelos Neurológicos , Inhibición Neural/fisiología , Neuronas/citología , Ratas , Ratas Sprague-Dawley , Sinapsis/fisiología , Factores de Tiempo
5.
Epilepsia ; 50(1): 44-55, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18637833

RESUMEN

PURPOSE: Central nervous system plasticity is essential for normal function, but can also reinforce abnormal network behavior, leading to epilepsy and other disorders. The role of altered ion channel expression in abnormal plasticity has not been thoroughly investigated. Nav1.6 is the most abundantly expressed sodium channel in the nervous system. Because of its distribution in the cell body and axon initial segment, Nav1.6 is crucial for action potential generation. The goal of the present study was to investigate the possible role of changes in Nav1.6 expression in abnormal, activity-dependent plasticity of hippocampal circuits. METHODS: We studied kindling, a form of abnormal activity-dependent facilitation. We investigated: (1) sodium channel protein expression by immunocytochemistry and sodium channel messenger RNA (mRNA) by in situ hybridization, (2) sodium current by patch clamp recordings, and (3) rate of kindling by analysis of seizure behavior. The initiation, development, and expression of kindling in wild-type mice were compared to Nav1.6 +/-med(tg) mice, which have reduced expression of Nav1.6. RESULTS: We found that kindling was associated with increased expression of Nav1.6 protein and mRNA, which occurred selectively in hippocampal CA3 neurons. Hippocampal CA3 neurons also showed increased persistent sodium current in kindled animals compared to sham-kindled controls. Conversely, Nav1.6 +/-med(tg) mice resisted the initiation and development of kindling. DISCUSSION: These findings suggest an important mechanism for enhanced excitability, in which Nav1.6 may participate in a self-reinforcing cycle of activity-dependent facilitation in the hippocampus. This mechanism could contribute to both normal hippocampal function and to epilepsy and other common nervous system disorders.


Asunto(s)
Epilepsia/genética , Epilepsia/fisiopatología , Hipocampo/metabolismo , Excitación Neurológica/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Canales de Sodio/genética , Canales de Sodio/metabolismo , Animales , Progresión de la Enfermedad , Inmunohistoquímica , Hibridación in Situ , Canal de Sodio Activado por Voltaje NAV1.6 , Técnicas de Placa-Clamp , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley
6.
Brain Res Rev ; 58(1): 226-35, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18486228

RESUMEN

The nociceptive nervous system and the immune system serve to defend and alarm the host of imminent or actual damage. However, persistent or recurring exposure of neurons to activated immune cells is associated with an increase in painful behavior following experimental neuropathic injuries. Our understanding of the functional consequences of immune cell-neuron interaction is still incomplete. The purpose of this review is to focus on a seriously detrimental consequence of chronic activation of these two systems, by discussing the contributions of microglia and polymorphonuclear neutrophils to neuropathic pain following experimental spinal cord injury or peripheral nerve injury. Identification of molecules mediating pro-nociceptive signaling between immune cells and neurons, as well as the distinction between neuroprotective versus neuroexcitatory effects of activated immune cells, may be useful in the development of pharmacotherapy for the management of chronic pain and restoration of the beneficial alarm function of pain.


Asunto(s)
Microglía/fisiología , Neuralgia/fisiopatología , Neutrófilos/fisiología , Animales , Humanos , Mediadores de Inflamación/metabolismo , Mediadores de Inflamación/fisiología , Microglía/metabolismo , Modelos Biológicos , Neuralgia/etiología , Neuralgia/metabolismo , Neutrófilos/metabolismo , Traumatismos de los Nervios Periféricos , Nervios Periféricos/fisiopatología , Transducción de Señal/fisiología , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/fisiopatología
7.
J Neurosci ; 27(33): 8893-902, 2007 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-17699671

RESUMEN

Spinal cord injury (SCI) results in the generation and amplification of pain caused in part by injury-induced changes in neuronal excitability at multiple levels along the sensory neuraxis. We have previously shown that activated microglia, through an ERK (extracellular signal-regulated kinase)-regulated PGE(2) (prostaglandin E(2)) signaling mechanism, maintain neuronal hyperexcitability in the lumbar dorsal horn. Here, we examined whether microglial cells in the thalamus contribute to the modulation of chronic pain after SCI, and whether microglial activation is governed by spinally mediated increases in the microglial activator cysteine-cysteine chemokine ligand 21 (CCL21). We report that CCL21 is upregulated in dorsal horn neurons, that tissue levels are increased in the dorsal horn and ventral posterolateral (VPL) nucleus of the thalamus 4 weeks after SCI, and that the increase can be differentially reduced by spinal blockade at T1 or L1. In intact animals, electrical stimulation of the spinothalamic tract induces increases in thalamic CCL21 levels. Recombinant CCL21 injected into the VPL of intact animals transiently activates microglia and induces pain-related behaviors, effects that could be blocked with minocycline. After SCI, intra-VPL antibody-mediated neutralization of CCL21 decreases microglial activation and evoked hyperexcitability of VPL neurons, and restores nociceptive thresholds to near-normal levels. These data identify a novel pathway by which SCI triggers upregulation of the neuroimmune modulator CCL21 in the thalamus, which induces microglial activation in association with pain phenomena.


Asunto(s)
Quimiocinas CC/metabolismo , Microglía/efectos de los fármacos , Dolor/etiología , Dolor/metabolismo , Traumatismos de la Médula Espinal , Núcleos Talámicos Ventrales/patología , Animales , Conducta Animal , Quimiocina CCL21 , Quimiocinas CC/farmacología , Modelos Animales de Enfermedad , Estimulación Eléctrica/métodos , Ensayo de Inmunoadsorción Enzimática/métodos , Lateralidad Funcional , Regulación de la Expresión Génica/fisiología , Regulación de la Expresión Génica/efectos de la radiación , Masculino , Umbral del Dolor/efectos de los fármacos , Umbral del Dolor/fisiología , Umbral del Dolor/efectos de la radiación , Fosfopiruvato Hidratasa/metabolismo , Células del Asta Posterior/metabolismo , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Núcleos Talámicos Ventrales/metabolismo
8.
J Neurosci ; 27(9): 2357-68, 2007 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-17329433

RESUMEN

Many patients with traumatic spinal cord injury (SCI) report pain that persists indefinitely and is resistant to available therapeutic approaches. We recently showed that microglia become activated after experimental SCI and dynamically maintain hyperresponsiveness of spinal cord nociceptive neurons and pain-related behaviors. Mechanisms of signaling between microglia and neurons that help to maintain abnormal pain processing are unknown. In this study, adult male Sprague Dawley rats underwent T9 spinal cord contusion injury. Four weeks after injury when lumbar dorsal horn multireceptive neurons became hyperresponsive and when behavioral nociceptive thresholds to mechanical and thermal stimuli were decreased, we tested the hypothesis that prostaglandin E2 (PGE2) contributes to signaling between microglia and neurons. Immunohistochemical data showed specific localization of phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2), an upstream regulator of PGE2 release, to microglial cells and a neuronal localization of the PGE2 receptor E-prostanoid 2 (EP2). Enzyme immunoassay analysis showed that PGE2 release was dependent on microglial activation and ERK1/2 phosphorylation. Pharmacological antagonism of PGE2 release was achieved with the mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor PD98059 [2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one] and the microglial inhibitor minocycline. Cyclooxygenase-2 expression in microglia was similarly reduced by MEK1/2 inhibition. PD98059 and EP2 receptor blockade with AH6809 (6-isopropoxy-9-oxoxanthene-2-carboxylic acid) resulted in a decrease in hyperresponsiveness of dorsal horn neurons and partial restoration of behavioral nociceptive thresholds. Selective targeting of dorsal horn microglia with the Mac-1-SAP immunotoxin, a chemical conjugate of mouse monoclonal antibody to CD11b and the ribosome-inactivating protein saporin, resulted in reduced microglia staining, reduction in PGE2 levels, and reversed pain-related behaviors [corrected]. On the basis of these observations, we propose a PGE2-dependent, ERK1/2-regulated microglia-neuron signaling pathway that mediates the microglial component of pain maintenance after injury to the spinal cord.


Asunto(s)
Dinoprostona/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Dolor/fisiopatología , Células del Asta Posterior/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología , Animales , Enfermedad Crónica , Activación Enzimática , Masculino , Dolor/etiología , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/complicaciones , eIF-2 Quinasa/metabolismo
9.
Mol Pharmacol ; 73(1): 243-51, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17959714

RESUMEN

Multidrug resistance protein 4 (MRP4; ABCC4) is a member of the MRP/ATP-binding cassette family serving as a transmembrane transporter involved in energy-dependent efflux of anticancer/antiviral nucleotide agents and of physiological substrates, including cyclic nucleotides and prostaglandins (PGs). Phenotypic consequences of mrp4 deficiency were investigated using mrp4-knockout mice and derived immortalized mouse embryonic fibroblast (MEF) cells. Mrp4 deficiency caused decreased extracellular and increased intracellular levels of cAMP in MEF cells under normal and forskolin-stimulated conditions. Mrp4 deficiency and RNA interference-mediated mrp4 knockdown led to a pronounced reduction in extracellular PGE(2) but with no accumulation of intracellular PGE(2) in MEF cells. This result was consistent with attenuated cAMP-dependent protein kinase activity and reduced cyclooxygenase-2 (Cox-2) expression in mrp4-deficient MEF cells, suggesting that PG synthesis is restrained along with a lack of PG transport caused by mrp4 deficiency. Mice lacking mrp4 exhibited no outward phenotypes but had a decrease in plasma PGE metabolites and an increase in inflammatory pain threshold compared with wild-type mice. Collectively, these findings imply that mrp4 mediates the efflux of PGE(2) and concomitantly modulates cAMP mediated signaling for balanced PG synthesis in MEF cells. Abrogation of mrp4 affects the regulation of peripheral PG levels and consequently alters inflammatory nociceptive responses in vivo.


Asunto(s)
AMP Cíclico/metabolismo , Dinoprostona/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Dolor/metabolismo , Transducción de Señal , Animales , Transporte Biológico , Ratones , Ratones Noqueados
10.
Mol Neurobiol ; 37(1): 52-63, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18415034

RESUMEN

Injury to the spinal cord (SCI) can produce a constellation of problems including chronic pain, autonomic dysreflexia, and motor dysfunction. Neuroplasticity in the form of fiber sprouting or the lack thereof is an important phenomenon that can contribute to the deleterious effects of SCI. Aberrant sprouting of primary afferent fibers and synaptogenesis within incorrect dorsal horn laminae leads to the development and maintenance of chronic pain as well as autonomic dysreflexia. At the same time, interruption of connections between supraspinal motor control centers and spinal cord output cells, due to lack of successful regenerative sprouting of injured descending fiber tracts, contributes to motor deficits. Similarities in the molecular control of axonal growth of motor and sensory fibers have made the development of cogent therapies difficult. In this study, we discuss recent findings related to the degradation of inhibitory barriers and promotion of sprouting of motor fibers as a strategy for the restoration of motor function and note that this may induce primary afferent fiber sprouting that can contribute to chronic pain. We highlight the importance of careful attentiveness to off-target molecular- and circuit-level modulation of nociceptive processing while moving forward with the development of therapies that will restore motor function after SCI.


Asunto(s)
Trastornos Neurológicos de la Marcha/fisiopatología , Regeneración Nerviosa , Plasticidad Neuronal , Dolor/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología , Vías Aferentes/patología , Vías Aferentes/fisiopatología , Animales , Enfermedad Crónica , Trastornos Neurológicos de la Marcha/etiología , Humanos , Nociceptores/patología , Nociceptores/fisiopatología , Dolor/etiología , Recuperación de la Función , Traumatismos de la Médula Espinal/complicaciones , Raíces Nerviosas Espinales/patología , Raíces Nerviosas Espinales/fisiopatología
11.
Trends Neurosci ; 29(4): 207-15, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16494954

RESUMEN

Neuropathic pain and phantom phenomena occur commonly after spinal cord injury (SCI) but their molecular basis is not yet fully understood. Recent findings demonstrate abnormal expression of the Nav1.3 Na(+) channel within second-order spinal cord dorsal horn neurons and third-order thalamic neurons along the pain pathway after SCI, and suggest that this change makes these neurons hyperexcitable so that they act as pain amplifiers and generators. Delineation of molecular changes that contribute to hyperexcitability of pain-signaling neurons might lead to identification of molecular targets that will be useful in the treatment of neuropathic pain after SCI and related nervous system injuries.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Vías Nerviosas/metabolismo , Dolor/metabolismo , Miembro Fantasma/etiología , Canales de Sodio/metabolismo , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/metabolismo , Tálamo/metabolismo , Animales , Humanos , Canal de Sodio Activado por Voltaje NAV1.3 , Vías Nerviosas/citología , Neuronas/metabolismo , Dolor/etiología , Dolor/fisiopatología , Miembro Fantasma/metabolismo , Miembro Fantasma/fisiopatología , Células del Asta Posterior/metabolismo , Ratas , Traumatismos de la Médula Espinal/fisiopatología , Tálamo/citología , Regulación hacia Arriba
12.
J Neurosci ; 26(16): 4308-17, 2006 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-16624951

RESUMEN

Traumatic spinal cord injury (SCI) results not only in motor impairment but also in chronic central pain, which can be refractory to conventional treatment approaches. It has been shown recently that in models of peripheral nerve injury, spinal cord microglia can become activated and contribute to development of pain. Considering their role in pain after peripheral injury, and because microglia are known to become activated after SCI, we tested the hypothesis that activated microglia contribute to chronic pain after SCI. In this study, adult male Sprague Dawley rats underwent T9 spinal cord contusion injury. Four weeks after injury, when lumbar dorsal horn multireceptive neurons became hyperresponsive and when behavioral nociceptive thresholds were decreased to both mechanical and thermal stimuli, intrathecal infusions of the microglial inhibitor minocycline were initiated. Electrophysiological experiments showed that minocycline rapidly attenuated hyperresponsiveness of lumbar dorsal horn neurons. Behavioral data showed that minocycline restored nociceptive thresholds, at which time spinal microglial cells assumed a quiescent morphological phenotype. Levels of phosphorylated-p38 were decreased in SCI animals receiving minocycline. Cessation of delivery of minocycline resulted in an immediate return of pain-related phenomena. These results suggest an important role for activated microglia in the maintenance of chronic central below-level pain after SCI and support the newly emerging role of non-neuronal immune cells as a contributing factor in post-SCI pain.


Asunto(s)
Microglía/metabolismo , Dolor/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Animales , Enfermedad Crónica , Masculino , Microglía/efectos de los fármacos , Minociclina/farmacología , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Ratas , Ratas Sprague-Dawley , Vértebras Torácicas/efectos de los fármacos , Vértebras Torácicas/metabolismo
13.
Prog Brain Res ; 161: 195-203, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17618978

RESUMEN

The chronic pain that develops as a result of spinal cord injury (SCI) is extremely debilitating and remains largely unmanageable by current therapeutic strategies. Voltage-gated sodium channels regulate the biophysical properties, and thus firing characteristics, of neurons. After SCI the repertoire of sodium channels produced by dorsal horn nociceptive neurons is altered, enabling neurons to fire at higher than normal rates in response to unchanged peripheral stimuli as well as to generate spontaneous discharges in the absence of stimuli, resulting in the genesis of neuropathic pain. Our results have shown increased expression of the Nav1.3 sodium channel in the spinal cord and thalamus. Nav1.3 upregulation allows dorsal horn neurons to generate ramp currents, enhanced persistent currents, and shifts in steady-state activation and inactivation. Further downstream, Nav1.3 causes increased spontaneous and evoked firing of neurons in the ventroposterior lateral (VPL) nucleus of the thalamus. Nav1.3 also underlies changes in burst firing properties of VPL neurons. The combination of spinal and thalamic generation and amplification of pain by Nav1.3 dysregulation contributes to post-SCI chronic pain. If proven to be similar in humans, targeting of this system after SCI may offer hope for treatment of clinical pain.


Asunto(s)
Dolor/etiología , Dolor/fisiopatología , Canales de Sodio/biosíntesis , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/metabolismo , Animales , Humanos , Nociceptores/fisiología , Dolor/metabolismo , Células del Asta Posterior/metabolismo , Médula Espinal/metabolismo , Médula Espinal/fisiopatología
14.
J Neurotrauma ; 24(2): 421-32, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17376004

RESUMEN

Following spinal cord injury (SCI), descending axons that carry motor commands from the brain to the spinal cord are injured or transected, producing chronic motor dysfunction and paralysis. Reconnection of these axons is a major prerequisite for restoration of function after SCI. Thus far, only modest gains in motor function have been achieved experimentally or in the clinic after SCI, identifying the practical limitations of current treatment approaches. In this paper, we use an ordinary differential equation (ODE) to simulate the relative and synergistic contributions of several experimentally-established biological factors related to inhibition or promotion of axonal repair and restoration of function after SCI. The factors were mathematically modeled by the ODE. The results of our simulation show that in a model system, many factors influenced the achievability of axonal reconnection. Certain factors more strongly affected axonal reconnection in isolation, and some factors interacted in a synergistic fashion to produce further improvements in axonal reconnection. Our data suggest that mathematical modeling may be useful in evaluating the complex interactions of discrete therapeutic factors not possible in experimental preparations, and highlight the benefit of a combinatorial therapeutic approach focused on promoting axonal sprouting, attraction of cut ends, and removal of growth inhibition for achieving axonal reconnection. Predictions of this simulation may be of utility in guiding future experiments aimed at restoring function after SCI.


Asunto(s)
Axones/fisiología , Modelos Neurológicos , Fibras Nerviosas/fisiología , Regeneración/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Humanos , Cómputos Matemáticos , Vías Nerviosas/fisiopatología , Factores de Tiempo
15.
Brain ; 129(Pt 12): 3196-208, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16931536

RESUMEN

Axonal degeneration is a major contributor to non-remitting deficits in multiple sclerosis, and there is thus considerable current interest in the development of strategies that might prevent axonal loss in neuroinflammatory disease. Dysregulation of sodium ion homeostasis has been implicated in mechanisms leading to axonal degeneration, and several studies have shown that blockade of sodium channels can ameliorate axon damage following anoxic, traumatic and nitric oxide-induced CNS injury. Two sodium channel blockers, phenytoin and flecainide, have been reported to protect axons in experimental autoimmune encephalomyelitis (EAE) for 30 days, but long-term protective effects have not been studied. We demonstrate here that oral administration of phenytoin provides long-term (up to 180 days) protection for spinal cord corticospinal tract (CST) and dorsal column (DC) axons in both monophasic (C57/BL6 mice) and chronic-relapsing (Biozzi mice) murine EAE. Untreated C57/BL6 mice exhibit a 40-50% loss of CST and DF axons at 90 and 180 days post-EAE induction via myelin-oligodendrocyte glycoprotein (MOG) injection. In contrast, only 4% of DF axons are lost at 90 days, and only 8% are lost at 180 days in phenytoin-treated C57/BL6 mice with EAE; only 21-29% of CST axons are lost at 90 and 180 days in phenytoin-treated C57/BL6 mice with EAE. Attenuation of dorsal column compound action potentials was ameliorated and clinical status was also significantly enhanced with phenytoin treatment at 90 and 180 days in this model. In addition, inflammatory cell infiltration into the dorsal columns was reduced in phenytoin-treated mice with EAE compared with untreated mice with EAE. Similar results were obtained in Biozzi mice with chronic-relapsing EAE followed for 120 days post-injection. These observations demonstrate that phenytoin provides long-term protection of CNS axons and improves clinical status in both monophasic and chronic-relapsing models of neuroinflammation.


Asunto(s)
Axones/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Fenitoína/administración & dosificación , Bloqueadores de los Canales de Sodio/administración & dosificación , Médula Espinal/efectos de los fármacos , Potenciales de Acción/fisiología , Administración Oral , Animales , Recuento de Células/métodos , Vértebras Cervicales , Enfermedad Crónica , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/fisiopatología , Inmunohistoquímica/métodos , Inyecciones Subcutáneas , Ratones , Ratones Endogámicos C57BL , Proteínas de la Mielina , Glicoproteína Asociada a Mielina/administración & dosificación , Glicoproteína Mielina-Oligodendrócito , Conducción Nerviosa , Recurrencia , Médula Espinal/patología , Médula Espinal/fisiopatología , Resultado del Tratamiento
16.
Mol Pain ; 2: 27, 2006 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-16916452

RESUMEN

Peripheral nerve injury is known to up-regulate the expression of rapidly-repriming Nav1.3 sodium channel within first-order dorsal root ganglion neurons and second-order dorsal horn nociceptive neurons, but it is not known if pain-processing neurons higher along the neuraxis also undergo changes in sodium channel expression. In this study, we hypothesized that after peripheral nerve injury, third-order neurons in the ventral posterolateral (VPL) nucleus of the thalamus undergo changes in expression of sodium channels. To test this hypothesis, adult male Sprague-Dawley rats underwent chronic constriction injury (CCI) of the sciatic nerve. Ten days after CCI, when allodynia and hyperalgesia were evident, in situ hybridization and immunocytochemical analysis revealed up-regulation of Nav1.3 mRNA, but no changes in expression of Nav1.1, Nav1.2, or Nav1.6 in VPL neurons, and unit recordings demonstrated increased background firing, which persisted after spinal cord transection, and evoked hyperresponsiveness to peripheral stimuli. These results demonstrate that injury to the peripheral nervous system induces alterations in sodium channel expression within higher-order VPL neurons, and suggest that misexpression of the Nav1.3 sodium channel increases the excitability of VPL neurons injury, contributing to neuropathic pain.


Asunto(s)
Traumatismos de los Nervios Periféricos , Canales de Sodio/metabolismo , Núcleos Talámicos Ventrales/metabolismo , Animales , Conducta Animal , Electrodiagnóstico , Hibridación in Situ , Masculino , Modelos Biológicos , Neuronas Aferentes/metabolismo , Ratas , Ratas Sprague-Dawley , Médula Espinal/fisiología , Tálamo/fisiología
17.
Brain ; 128(Pt 10): 2359-71, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16109750

RESUMEN

Spinal cord contusion injury (SCI) is known to induce pain-related behaviour, as well as hyperresponsiveness in lumbar dorsal horn nociceptive neurons associated with the aberrant expression of Na(v)1.3, a rapidly repriming voltage-gated sodium channel. Many of these second-order dorsal horn neurons project to third-order neurons in the ventrobasal complex of the thalamus. In this study we hypothesized that, following SCI, neurons in the thalamus undergo electrophysiological changes linked to aberrant expression of Na(v)1.3. Adult male Sprague-Dawley rats underwent contusion SCI at the T9 thoracic level. Four weeks post-SCI, Na(v)1.3 protein was upregulated within thalamic neurons in ventroposterior lateral (VPL) and ventroposterior medial nuclei, where extracellular unit recordings revealed increased spontaneous discharge, afterdischarge, hyperresponsiveness to innocuous and noxious peripheral stimuli, and expansion of peripheral receptive fields. Altered electrophysiological properties of VPL neurons persisted after interruption of ascending spinal barrage by spinal cord transection above the level of the injury. Lumbar intrathecal administration of specific antisense oligodeoxynucleotides generated against Na(v)1.3 caused a significant reduction in Na(v)1.3 expression in thalamic neurons and reversed electrophysiological alterations. These results show, for the first time, a change in sodium channel expression within neurons in the thalamus after injury to the spinal cord, and suggest that these changes contribute to altered processing of somatosensory information after SCI.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Canales de Sodio/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Tálamo/metabolismo , Potenciales de Acción/fisiología , Animales , Conducta Animal , Potenciales Evocados/fisiología , Inmunohistoquímica/métodos , Núcleos Talámicos Laterales/metabolismo , Masculino , Canal de Sodio Activado por Voltaje NAV1.3 , Proteínas del Tejido Nervioso/análisis , Oligonucleótidos Antisentido/genética , Ratas , Ratas Sprague-Dawley , Canales de Sodio/análisis , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/metabolismo , Vértebras Torácicas , Regulación hacia Arriba , Núcleos Talámicos Ventrales/metabolismo
18.
J Neurosci ; 24(20): 4832-9, 2004 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-15152043

RESUMEN

Peripheral nerve injury is known to upregulate the rapidly repriming Na(v)1.3 sodium channel within first-order spinal sensory neurons. In this study, we hypothesized that (1) after peripheral nerve injury, second-order dorsal horn neurons abnormally express Na(v)1.3, which (2) contributes to the responsiveness of these dorsal horn neurons and to pain-related behaviors. To test these hypotheses, adult rats underwent chronic constriction injury (CCI) of the sciatic nerve. Ten days after CCI, allodynia and hyperalgesia were evident. In situ hybridization, quantitative reverse transcription-PCR, and immunocytochemical analysis revealed upregulation of Na(v)1.3 in dorsal horn nociceptive neurons but not in astrocytes or microglia, and unit recordings demonstrated hyperresponsiveness of dorsal horn sensory neurons. Intrathecal antisense oligodeoxynucleotides targeting Na(v)1.3 decreased the expression of Na(v)1.3 mRNA and protein, reduced the hyperresponsiveness of dorsal horn neurons, and attenuated pain-related behaviors after CCI, all of which returned after cessation of antisense delivery. These results demonstrate for the first time that sodium channel expression is altered within higher-order spinal sensory neurons after peripheral nerve injury and suggest a link between misexpression of the Na(v)1.3 sodium channel and central mechanisms that contribute to neuropathic pain after peripheral nerve injury.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Neuronas Aferentes/metabolismo , Dolor/fisiopatología , Neuropatía Ciática/fisiopatología , Canales de Sodio/metabolismo , Médula Espinal/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Inmunohistoquímica , Hibridación in Situ , Ligadura , Masculino , Canal de Sodio Activado por Voltaje NAV1.3 , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Neuronas Aferentes/efectos de los fármacos , Oligonucleótidos Antisentido/farmacología , Dolor/etiología , Dimensión del Dolor/efectos de los fármacos , Células del Asta Posterior/efectos de los fármacos , Células del Asta Posterior/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neuropatía Ciática/complicaciones , Neuropatía Ciática/metabolismo , Canales de Sodio/genética , Médula Espinal/efectos de los fármacos , Regulación hacia Arriba
19.
J Neurosci ; 23(26): 8881-92, 2003 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-14523090

RESUMEN

Spinal cord injury (SCI) can result in hyperexcitability of dorsal horn neurons and central neuropathic pain. We hypothesized that these phenomena are consequences, in part, of dysregulated expression of voltage-gated sodium channels. Because the rapidly repriming TTX-sensitive sodium channel Nav1.3 has been implicated in peripheral neuropathic pain, we investigated its role in central neuropathic pain after SCI. In this study, adult male Sprague Dawley rats underwent T9 spinal contusion injury. Four weeks after injury when extracellular recordings demonstrated hyperexcitability of L3-L5 dorsal horn multireceptive nociceptive neurons, and when pain-related behaviors were evident, quantitative RT-PCR, in situ hybridization, and immunocytochemistry revealed an upregulation of Nav1.3 in dorsal horn nociceptive neurons. Intrathecal administration of antisense oligodeoxynucleotides (ODNs) targeting Nav1.3 resulted in decreased expression of Nav1.3 mRNA and protein, reduced hyperexcitability of multireceptive dorsal horn neurons, and attenuated mechanical allodynia and thermal hyperalgesia after SCI. Expression of Nav1.3 protein and hyperexcitability in dorsal horn neurons as well as pain-related behaviors returned after cessation of antisense delivery. Responses to normally noxious stimuli and motor function were unchanged in SCI animals administered Nav1.3 antisense, and administration of mismatch ODNs had no effect. These results demonstrate for the first time that Nav1.3 is upregulated in second-order dorsal horn sensory neurons after nervous system injury, showing that SCI can trigger changes in sodium channel expression, and suggest a functional link between Nav1.3 expression and neuronal hyperexcitability associated with central neuropathic pain.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Neuralgia/fisiopatología , Neuronas/metabolismo , Células del Asta Posterior/fisiopatología , Canales de Sodio/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Animales , Conducta Animal/efectos de los fármacos , Recuento de Células , Modelos Animales de Enfermedad , Electrofisiología , Inmunohistoquímica , Hibridación in Situ , Masculino , Canal de Sodio Activado por Voltaje NAV1.3 , Proteínas del Tejido Nervioso/genética , Neuralgia/complicaciones , Neuronas/efectos de los fármacos , Neuronas/patología , Nociceptores/patología , Nociceptores/fisiopatología , Oligodesoxirribonucleótidos Antisentido/metabolismo , Oligodesoxirribonucleótidos Antisentido/farmacología , Dimensión del Dolor , Células del Asta Posterior/efectos de los fármacos , Células del Asta Posterior/patología , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Canales de Sodio/genética , Traumatismos de la Médula Espinal/complicaciones , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
20.
Invest Ophthalmol Vis Sci ; 46(11): 4164-9, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16249495

RESUMEN

PURPOSE: Sustained influx of intracellular sodium through voltage-gated sodium channels is an important event in the cascade leading to degeneration of axons. This study tested the hypothesis that sodium channel blockade with phenytoin would result in neuroprotection of retinal ganglion cells (RGCs) and optic nerve axons in an experimental model of glaucoma. METHODS: Chronic elevation of rat intraocular pressure (IOP) leading to optic nerve damage was induced using the episcleral vein occlusion model. Before induction of glaucoma, a subset of animals was placed on phenytoin-containing chow; this treatment continued for 8 weeks. Quantitative counts of backfilled RGCs and optic nerve axons was performed to examine the effects of phenytoin on glaucoma-induced adverse neurodegeneration. RESULTS: Elevated IOP resulted in a significant decrease in density of RGCs, as well as dropout of axons within the optic nerve at 8 weeks after induction. In phenytoin-treated animals, however, the loss of RGCs was significantly reduced compared to vehicle-treated glaucomatous animals. Axon loss in the optic nerve was also reduced in phenytoin-treated animals, compared to controls. CONCLUSIONS: Orally delivered phenytoin was effective in protecting neurons in an animal model of glaucoma, and merits further examination as a potential therapeutic strategy.


Asunto(s)
Glaucoma/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Enfermedades del Nervio Óptico/prevención & control , Fenitoína/uso terapéutico , Células Ganglionares de la Retina/efectos de los fármacos , Bloqueadores de los Canales de Sodio/uso terapéutico , Administración Oral , Animales , Axones/efectos de los fármacos , Axones/patología , Recuento de Células , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Glaucoma/patología , Presión Intraocular , Masculino , Nervio Óptico/efectos de los fármacos , Nervio Óptico/patología , Enfermedades del Nervio Óptico/patología , Ratas , Ratas Wistar , Células Ganglionares de la Retina/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA