RESUMEN
BACKGROUND: SP140 is a bromodomain-containing protein expressed predominantly in immune cells. Genetic polymorphisms and epigenetic modifications in the SP140 locus have been linked to Crohn's disease (CD), suggesting a role in inflammation. RESULTS: We report the development of the first small molecule SP140 inhibitor (GSK761) and utilize this to elucidate SP140 function in macrophages. We show that SP140 is highly expressed in CD mucosal macrophages and in in vitro-generated inflammatory macrophages. SP140 inhibition through GSK761 reduced monocyte-to-inflammatory macrophage differentiation and lipopolysaccharide (LPS)-induced inflammatory activation, while inducing the generation of CD206+ regulatory macrophages that were shown to associate with a therapeutic response to anti-TNF in CD patients. SP140 preferentially occupies transcriptional start sites in inflammatory macrophages, with enrichment at gene loci encoding pro-inflammatory cytokines/chemokines and inflammatory pathways. GSK761 specifically reduces SP140 chromatin binding and thereby expression of SP140-regulated genes. GSK761 inhibits the expression of cytokines, including TNF, by CD14+ macrophages isolated from CD intestinal mucosa. CONCLUSIONS: This study identifies SP140 as a druggable epigenetic therapeutic target for CD.
Asunto(s)
Enfermedad de Crohn , Inhibidores del Factor de Necrosis Tumoral , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Enfermedad de Crohn/genética , Enfermedad de Crohn/metabolismo , Citocinas/genética , Citocinas/metabolismo , Epigénesis Genética , Humanos , Macrófagos , Factores de Transcripción/genéticaRESUMEN
BACKGROUND: Vagus nerve stimulation has been suggested to affect immune responses, partly through a neuronal circuit requiring sympathetic innervation of the splenic nerve bundle and norepinephrine (NE) release. Molecular and cellular mechanisms of action remain elusive. Here, we investigated the therapeutic value of this neuromodulation in inflammatory bowel disease (IBD) by applying electrical splenic nerve bundle stimulation (SpNS) in mice with dextran sulfate sodium (DSS)-induced colitis. METHODS: Cuff electrodes were implanted around the splenic nerve bundle in mice, whereupon mice received SpNS or sham stimulation. Stimulation was applied 6 times daily for 12 days during DSS-induced colitis. Colonic and splenic tissues were collected for transcriptional analyses by qPCR and RNA-sequencing (RNA-seq). In addition, murine and human splenocytes were stimulated with lipopolysaccharide (LPS) in the absence or presence of NE. Single-cell RNA-seq data from publicly available data sets were analyzed for expression of ß-adrenergic receptors (ß-ARs). RESULTS: Colitic mice undergoing SpNS displayed reduced colon weight/length ratios and showed improved Disease Activity Index scores with reduced Tumor Necrosis Factor α mRNA expression in the colon compared with sham stimulated mice. Analyses of splenocytes from SpNS mice using RNA-seq demonstrated specific immune metabolism transcriptome profile changes in myeloid cells. Splenocytes showed expression of ß-ARs in myeloid and T cells. Cytokine production was reduced by NE in mouse and human LPS-stimulated splenocytes. CONCLUSIONS: Together, our results demonstrate that SpNS reduces clinical features of colonic inflammation in mice with DSS-induced colitis possibly by inhibiting splenic myeloid cell activation. Our data further support exploration of the clinical use of SpNS for patients with IBD.
Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Animales , Colitis/inducido químicamente , Colitis/terapia , Colon/metabolismo , Colon/patología , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Estimulación Eléctrica , Humanos , Enfermedades Inflamatorias del Intestino/inducido químicamente , Enfermedades Inflamatorias del Intestino/terapia , Lipopolisacáridos/efectos adversos , Ratones , Ratones Endogámicos C57BLRESUMEN
Hepatocellular carcinoma (HCC) is a primary liver cancer commonly found in adults. Previously, we showed the anticancer effects of Thai herbal plant extract, Dioscorea membranacea Pierre (DM), in HCC-bearing rats. In the present study, we further examined the proposed mechanism of DM, including apoptosis and antioxidant activity. Moreover, we used RNA sequencing (RNA-seq) to analyze molecular pathways in the rat model in which HCC was induced by diethylnitrosamine (DEN) and thioacetamide (TAA). The HCC-bearing rats were then treated with 40 mg/kg of DM for 8 weeks, after which experimental and control rats were sacrificed and liver tissues were collected. The RNA-seq data of DEN/TAA-treated rats exhibited upregulation of 16 hallmark pathways, including epithelial mesenchymal transition, inflammatory responses, and angiogenesis (p<0.01). DM extract expanded the Bax protein-positive pericentral zone in the tumor areas and decreased hepatic malondialdehyde levels, implying a decrease in lipid peroxidation in liver. However, DM treatment did not ameliorate the molecular pathways induced in DEN/TAA-treated livers. Our findings indicate that DM extract has antioxidant activity and exerts its pro-apoptotic effect on rat HCCs in vivo at the (post-)translational level.
Asunto(s)
Carcinoma Hepatocelular , Dioscorea , Neoplasias Hepáticas , Ratas , Animales , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Tioacetamida/toxicidad , Tioacetamida/metabolismo , Dietilnitrosamina/toxicidad , Dietilnitrosamina/metabolismo , Dioscorea/metabolismo , Antioxidantes/farmacología , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Hígado/patología , Extractos Vegetales/efectos adversosRESUMEN
Over the past years, several preclinical in vitro and ex vivo models have been developed that helped to understand some of the critical aspects of intestinal functions in health and disease such as inflammatory bowel disease (IBD). However, the translation to the human in vivo situation remains problematic. The main reason for this is that these approaches fail to fully reflect the multifactorial and complex in vivo environment (e.g., including microbiota, nutrition, and immune response) in the gut system. Although conventional models such as cell lines, Ussing chamber, and the everted sac are still used, increasingly more sophisticated intestinal models have been developed over the past years including organoids, InTESTine™ and microfluidic gut-on-chip. In this review, we gathered the most recent insights on the setup, advantages, limitations, and future perspectives of most frequently used in vitro and ex vivo models to study intestinal physiology and functions in health and disease.
Asunto(s)
Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiología , Modelos Biológicos , Línea Celular , Microbioma Gastrointestinal/fisiología , Humanos , Intestinos/fisiología , OrganoidesRESUMEN
Glutamine synthetase (GS) catalyzes condensation of ammonia with glutamate to glutamine. Glutamine serves, with alanine, as a major nontoxic interorgan ammonia carrier. Elimination of hepatic GS expression in mice causes only mild hyperammonemia and hypoglutaminemia but a pronounced decrease in the whole-body muscle-to-fat ratio with increased myostatin expression in muscle. Using GS-knockout/liver and control mice and stepwise increments of enterally infused ammonia, we show that â¼35% of this ammonia is detoxified by hepatic GS and â¼35% by urea-cycle enzymes, while â¼30% is not cleared by the liver, independent of portal ammonia concentrations ≤2 mmol/L. Using both genetic (GS-knockout/liver and GS-knockout/muscle) and pharmacological (methionine sulfoximine and dexamethasone) approaches to modulate GS activity, we further show that detoxification of stepwise increments of intravenously (jugular vein) infused ammonia is almost totally dependent on GS activity. Maximal ammonia-detoxifying capacity through either the enteral or the intravenous route is â¼160 µmol/hour in control mice. Using stable isotopes, we show that disposal of glutamine-bound ammonia to urea (through mitochondrial glutaminase and carbamoylphosphate synthetase) depends on the rate of glutamine synthesis and increases from â¼7% in methionine sulfoximine-treated mice to â¼500% in dexamethasone-treated mice (control mice, 100%), without difference in total urea synthesis. CONCLUSIONS: Hepatic GS contributes to both enteral and systemic ammonia detoxification. Glutamine synthesis in the periphery (including that in pericentral hepatocytes) and glutamine catabolism in (periportal) hepatocytes represents the high-affinity ammonia-detoxifying system of the body. The dependence of glutamine-bound ammonia disposal to urea on the rate of glutamine synthesis suggests that enhancing peripheral glutamine synthesis is a promising strategy to treat hyperammonemia. Because total urea synthesis does not depend on glutamine synthesis, we hypothesize that glutamate dehydrogenase complements mitochondrial ammonia production. (Hepatology 2017;65:281-293).
Asunto(s)
Amoníaco/metabolismo , Glutamato-Amoníaco Ligasa/fisiología , Animales , Bicarbonatos/metabolismo , Glutamina/metabolismo , Inactivación Metabólica , Hígado/metabolismo , RatonesRESUMEN
UNLABELLED: Notch signaling plays an acknowledged role in bile-duct development, but its involvement in cholangiocyte-fate determination remains incompletely understood. We investigated the effects of early Notch2 deletion in Notch2(fl/fl)/Alfp-Cre(tg/-) ("Notch2-cKO") and Notch2(fl/fl)/Alfp-Cre(-/-) ("control") mice. Fetal and neonatal Notch2-cKO livers were devoid of cytokeratin19 (CK19)-, Dolichos-biflorus agglutinin (DBA)-, and SOX9-positive ductal structures, demonstrating absence of prenatal cholangiocyte differentiation. Despite extensive cholestatic hepatocyte necrosis and growth retardation, mortality was only ~15%. Unexpectedly, a slow process of secondary cholangiocyte differentiation and bile-duct formation was initiated around weaning that histologically resembled the ductular reaction. Newly formed ducts varied from rare and non-connected, to multiple, disorganized tubular structures that connected to the extrahepatic bile ducts. Jaundice had disappeared in ~30% of Notch2-cKO mice by 6 months. The absence of NOTCH2 protein in postnatally differentiating cholangiocyte nuclei of Notch2-cKO mice showed that these cells had not originated from non-recombined precursor cells. Notch2 and Hnf6 mRNA levels were permanently decreased in Notch2-cKO livers. Perinatally, Foxa1, Foxa2, Hhex, Hnf1ß, Cebpα and Sox9 mRNA levels were all significantly lower in Notch2-cKO than control mice, but all except Foxa2 returned to normal or increased levels after weaning, coincident with the observed secondary bile-duct formation. Interestingly, Hhex and Sox9 mRNA levels remained elevated in icteric 6 months old Notch2-cKOs, but decreased to control levels in non-icteric Notch2-cKOs, implying a key role in secondary bile-duct formation. CONCLUSION: Cholangiocyte differentiation becomes progressively less dependent on NOTCH2 signaling with age, suggesting that ductal-plate formation is dependent on NOTCH2, but subsequent cholangiocyte differentiation is not.
Asunto(s)
Conductos Biliares/anomalías , Conductos Biliares/crecimiento & desarrollo , Hígado/metabolismo , Organogénesis/genética , Receptor Notch2/deficiencia , Análisis de Varianza , Animales , Cartilla de ADN/genética , Factor Nuclear 6 del Hepatocito/metabolismo , Técnicas Histológicas , Inmunohistoquímica , Ratones , Ratones Noqueados , Organogénesis/fisiología , Reacción en Cadena de la Polimerasa , Análisis de Regresión , DesteteRESUMEN
UNLABELLED: The hallmark of NAFLD is steatosis of unknown etiology. We tested the effect of a high-protein (HP)(2) diet on diet-induced steatosis in male C57BL/6 mice with and without pre-existing fatty liver. Mice were fed all combinations of semisynthetic low-fat (LF) or high-fat (HF) and low-protein (LP) or HP diets for 3weeks. To control for reduced energy intake by HF/HP-fed mice, a pair-fed HF/LP group was included. Reversibility of pre-existing steatosis was investigated by sequentially feeding HF/LP and HF/HP diets. HP-containing diets decreased hepatic lipids to ~40% of corresponding LP-containing diets, were more efficient in this respect than reducing energy intake to 80%, and reversed pre-existing diet-induced steatosis. Compared to LP-containing diets, mice fed HP-containing diets showed increased mitochondrial oxidative capacity (elevated Pgc1α, mAco, and Cpt1 mRNAs, complex-V protein, and decreased plasma free and short-chain acyl-carnitines, and [C0]/[C16+C18] carnitine ratio); increased gluconeogenesis and pyruvate cycling (increased PCK1 protein and fed plasma-glucose concentration without increased G6pase mRNA); reduced fatty-acid desaturation (decreased Scd1 expression and [C16:1n-7]/[C16:0] ratio) and increased long-chain PUFA elongation; a selective increase in plasma branched-chain amino acids; a decrease in cell stress (reduced phosphorylated eIF2α, and Fgf21 and Chop expression); and a trend toward less inflammation (lower Mcp1 and Cd11b expression and less phosphorylated NFκB). CONCLUSION: HP diets prevent and reverse steatosis independently of fat and carbohydrate intake more efficiently than a 20% reduction in energy intake. The effect appears to result from fuel-generated, highly distributed small, synergistic increases in lipid and BCAA catabolism, and a decrease in cell stress.
Asunto(s)
Proteínas en la Dieta/farmacología , Hígado Graso/prevención & control , Hígado/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Aminoácidos/sangre , Animales , Glucemia/metabolismo , Western Blotting , Colesterol/sangre , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/farmacología , Proteínas en la Dieta/administración & dosificación , Ácidos Grasos no Esterificados/sangre , Hígado Graso/sangre , Hígado Graso/genética , Factores de Crecimiento de Fibroblastos/sangre , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Expresión Génica/efectos de los fármacos , Insulina/sangre , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/genética , Mitocondrias/metabolismo , FN-kappa B/metabolismo , Enfermedad del Hígado Graso no Alcohólico , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fosforilación/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción , Triglicéridos/sangre , Triglicéridos/metabolismo , Aumento de Peso/efectos de los fármacosRESUMEN
BACKGROUND: Acute, high-dose folic acid (FA) administration has recently been shown to possess unprecedented effective cardioprotection against ischaemia/reperfusion (I/R) injury. Here we explore the translation potential of FA as treatment modality for cardiac I/R. METHODS: Dependency of FA protection on dose, ischaemia duration, and eNOS was examined in an isolated mouse heart I/R model, whereas dependency on animal health status and anaesthesia was examined in an in vivo rat model of regional cardiac I/R. RESULTS: 50 µM FA provided maximal reduction (by 95%) of I/R-induced cell death following 25 min ischaemia in isolated wild-type hearts, with protection associated with increased coupled eNOS protein. No protection was observed with 35 min I or in eNOS(-/-) hearts. Acute intravenous administration of FA during a 25 min ischaemic period reduced infarct size by 45% in in vivo pentobarbital-anaesthetised young, healthy rats. FA did not reduce infarct size in aged or pre-diabetic rats, although it did preserve hemodynamics in the pre-diabetic rats. Finally, using a clinically-relevant anaesthetic regimen of fentanyl-propofol anaesthesia, FA treatment was ineffective in young, aged and pre-diabetic animals. CONCLUSIONS: The protective potential of an initially promising cardioprotective treatment of high dose FA against cardiac I/R infarction, is critically dependent on experimental conditions with relevance to the clinical condition. Our data indicates the necessity of expanded pre-clinical testing of cardioprotective interventions before embarking on clinical testing, in order to prevent too many "lost-in-translation" drugs and unnecessary clinical studies.
Asunto(s)
Anestésicos/administración & dosificación , Cardiotónicos/uso terapéutico , Ácido Fólico/administración & dosificación , Estado de Salud , Animales , Cardiotónicos/administración & dosificación , Relación Dosis-Respuesta a Droga , Ratones , Ratones Endogámicos C57BL , RatasRESUMEN
Ciliopathies, a class of rare genetic disorders, present often with retinal degeneration caused by protein transport defects between the inner segment and the outer segment of the photoreceptors. Bardet-Biedl syndrome is one such ciliopathy, genetically heterogeneous with 17 BBS genes identified to date, presenting early onset retinitis pigmentosa. By investigating BBS12-deprived retinal explants and the Bbs12(-/-) murine model, we show that the impaired intraciliary transport results in protein retention in the endoplasmic reticulum. The protein overload activates a proapoptotic unfolded protein response leading to a specific Caspase12-mediated death of the photoreceptors. Having identified a therapeutic window in the early postnatal retinal development and through optimized pharmacological modulation of the unfolded protein response, combining three specific compounds, namely valproic acid, guanabenz, and a specific Caspase12 inhibitor, achieved efficient photoreceptor protection, thereby maintaining light detection ability in vivo.
Asunto(s)
Apoptosis/efectos de los fármacos , Síndrome de Bardet-Biedl/tratamiento farmacológico , Células Fotorreceptoras/efectos de los fármacos , Retina/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos , Visión Ocular/efectos de los fármacos , Animales , Transporte Biológico , Caspasa 12/metabolismo , Inhibidores de Caspasas/farmacología , Inhibidores de Caspasas/uso terapéutico , Chaperoninas/deficiencia , Chaperoninas/genética , Cilios/metabolismo , Cilios/patología , Citoprotección , Estrés del Retículo Endoplásmico/efectos de los fármacos , Guanabenzo/farmacología , Guanabenzo/uso terapéutico , Cinética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Células Fotorreceptoras/enzimología , Células Fotorreceptoras/patología , Retina/metabolismo , Retina/patología , Transducción de Señal , Técnicas de Cultivo de Tejidos , Ácido Valproico/farmacología , Ácido Valproico/uso terapéuticoRESUMEN
Asthma is a chronic inflammatory disease of the small airways, with airway hyperresponsiveness (AHR) and inflammation as hallmarks. Recent studies suggest a role for arginase in asthma pathogenesis, possibly because arginine is the substrate for both arginase and NO synthase and because NO modulates bronchial tone and inflammation. Our objective was to investigate the importance of increased pulmonary arginase 1 expression on methacholine-induced AHR and lung inflammation in a mouse model of allergic asthma. Arginase 1 expression in the lung was ablated by crossing Arg1(fl/fl) with Tie2Cre(tg/-) mice. Mice were sensitized and then challenged with ovalbumin. Lung function was measured with the Flexivent. Adaptive changes in gene expression, chemokine and cytokine secretion, and lung histology were quantified with quantitative PCR, ELISA, and immunohistochemistry. Arg1 deficiency did not affect the allergic response in lungs and large-airway resistance, but it improved peripheral lung function (tissue elastance and resistance) and attenuated adaptive increases in mRNA expression of arginine-catabolizing enzymes Arg2 and Nos2, arginine transporters Slc7a1 and Slc7a7, chemokines Ccl2 and Ccl11, cytokines Tnfa and Ifng, mucus-associated epithelial markers Clca3 and Muc5ac, and lung content of IL-13 and CCL11. However, expression of Il4, Il5, Il10, and Il13 mRNA; lung content of IL-4, IL-5, IL-10, TNF-α, and IFN-γ protein; and lung pathology were not affected. Correlation analysis showed that Arg1 ablation disturbed the coordinated pulmonary response to ovalbumin challenges, suggesting arginine (metabolite) dependence of this response. Arg1 ablation in the lung improved peripheral lung function and affected arginine metabolism but had little effect on airway inflammation.
Asunto(s)
Arginasa/fisiología , Asma/fisiopatología , Hiperreactividad Bronquial/patología , Hipersensibilidad/patología , Pulmón/fisiología , Neumonía/patología , Sistema Respiratorio/patología , Resistencia de las Vías Respiratorias/fisiología , Animales , Western Blotting , Hiperreactividad Bronquial/inducido químicamente , Hiperreactividad Bronquial/metabolismo , Broncoconstrictores/toxicidad , Quimiocinas/metabolismo , Citocinas/metabolismo , Células Dendríticas/citología , Células Dendríticas/metabolismo , Femenino , Perfilación de la Expresión Génica , Hipersensibilidad/metabolismo , Técnicas para Inmunoenzimas , Pulmón/citología , Macrófagos/citología , Macrófagos/metabolismo , Masculino , Cloruro de Metacolina/toxicidad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/citología , Células Mieloides/metabolismo , Ovalbúmina/fisiología , Neumonía/inducido químicamente , Neumonía/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Sistema Respiratorio/efectos de los fármacos , Sistema Respiratorio/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
BACKGROUND & AIMS: The AMC-bioartificial liver loaded with the human hepatoma cell line HepaRG as biocomponent (HepaRG-AMC-BAL) has recently proven efficacious in rats with acute liver failure (ALF). However, its efficacy may be affected by cytotoxic components of ALF plasma during treatment. In this study, we investigated the effects of ALF-plasma on the HepaRG-AMC-BAL. METHODS: HepaRG-AMC-BALs were connected to the blood circulation of rats with total liver ischaemia, either during the first 5 h after induction of ischaemia (mild ALF group), or during the following 10 h (severe ALF group). After disconnection, the BALs were assessed for cell leakage, gene transcript levels, ammonia elimination, urea production, cytochrome P450 3A4 activity, apolipoprotein A 1 production, glucose and amino acid metabolism. RESULTS: Cell leakage increased 2.5-fold in the severe ALF group, but remained limited in all groups. Hepatic gene transcript levels decreased (max 40-fold) or remained stable. In contrast, hepatic functions increased slightly or remained stable. Particularly, urea production increased 1.5-fold, with a concurrent increase in arginase 2 transcription and arginine consumption, with a trend towards reduced conversion of ammonia into urea. The amino acid consumption increased, however, the net glucose consumption remained stable. CONCLUSIONS: The HepaRG-AMC-BAL retains functionality after both mild and severe exposure to ALF plasma, but urea production may be increasingly derived from arginase 2 activity instead of urea cycle activity. Nevertheless, the increase in cell leakage and decrease in various hepatic transcript levels suggest that a decrease in hepatic functionality may follow upon extended exposure to ALF plasma.
Asunto(s)
Fallo Hepático Agudo/terapia , Hígado Artificial , Hígado/metabolismo , Aminoácidos/metabolismo , Amoníaco/metabolismo , Animales , Apolipoproteína A-I/metabolismo , Línea Celular Tumoral , Citocromo P-450 CYP3A/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Glucosa/metabolismo , Humanos , Hígado/patología , Fallo Hepático Agudo/sangre , Fallo Hepático Agudo/genética , Fallo Hepático Agudo/patología , Ratas , Ratas Wistar , Índice de Severidad de la Enfermedad , Factores de Tiempo , Transcripción Genética , Urea/metabolismoRESUMEN
Innervation of the intestinal mucosa by the sympathetic nervous system is well described but the effects of adrenergic receptor stimulation on the intestinal epithelium remain equivocal. We therefore investigated the effect of sympathetic neuronal activation on intestinal cells in mouse models and organoid cultures, to identify the molecular routes involved. Using publicly available single-cell RNA sequencing datasets we show that the α2A isoform is the most abundant adrenergic receptor in small intestinal epithelial cells. Stimulation of this receptor with norepinephrine or a synthetic specific α2A receptor agonist promotes epithelial proliferation and stem cell function, while reducing differentiation in vivo and in intestinal organoids. In an anastomotic healing mouse model, adrenergic receptor α2A stimulation resulted in improved anastomotic healing, while surgical sympathectomy augmented anastomotic leak. Furthermore, stimulation of this receptor led to profound changes in the microbial composition, likely because of altered epithelial antimicrobial peptide secretion. Thus, we established that adrenergic receptor α2A is the molecular delegate of intestinal epithelial sympathetic activity controlling epithelial proliferation, differentiation, and host defense. Therefore, this receptor could serve as a newly identified molecular target to improve mucosal healing in intestinal inflammation and wounding.
Asunto(s)
Células Epiteliales , Intestinos , Animales , Ratones , Proliferación Celular , Mucosa Intestinal , Receptores Adrenérgicos , Receptores Adrenérgicos alfa 2/genética , Cicatrización de Heridas/fisiologíaRESUMEN
BACKGROUND: Understanding the early processes underlying intestinal anastomotic healing is crucial to comprehend the pathophysiology of anastomotic leakage. The aim of this study was to assess normal intestinal anastomotic healing and disturbed healing in rats to investigate morphological, cellular and intrinsic molecular changes in the anastomotic tissue. METHOD: Anastomoses were created in two groups of Wistar rats, using four sutures or 12 sutures to mimic anastomotic leakage and anastomotic healing respectively. At 6, 12, 24 hours and 2, 3, 5 and 7 days, anastomotic tissue was assessed macroscopically using the anastomotic complication score and histologically using the modified Ehrlich-Hunt score. Transcriptome analysis was performed to assess differences between anastomotic leakage and anastomotic healing at the first three time points to find affected genes and biological processes. RESULTS: Ninety-eight rats were operated on (49 animals in the anastomotic leakage and 49 in the anastomotic healing group) and seven rats analysed at each time point. None of the animals with 12 sutures developed anastomotic leakage macroscopically, whereas 35 of the 49 animals with four sutures developed anastomotic leakage. Histological analysis showed increasing influx of inflammatory cells up to 3 days in anastomotic healing and up to 7 days in anastomotic leakage, and this increase was significantly higher in anastomotic leakage at 5 (P = 0.041) and 7 days (P = 0.003). Transcriptome analyses revealed large differences between anastomotic leakage and anastomotic healing at 6 and 24 hours, mainly driven by an overall downregulation of genes in anastomotic leakage. CONCLUSION: Transcriptomic analyses revealed large differences between normal and disturbed healing at 6 hours after surgery, which might eventually serve as early-onset biomarkers for anastomotic leakage.
Asunto(s)
Fuga Anastomótica , Transcriptoma , Ratas , Humanos , Animales , Fuga Anastomótica/etiología , Ratas Wistar , Anastomosis Quirúrgica/efectos adversos , Cicatrización de Heridas/genéticaRESUMEN
Starvation elicits a complex adaptive response in an organism. No information on transcriptional regulation of metabolic adaptations is available. We, therefore, studied the gene expression profiles of brain, small intestine, kidney, liver, and skeletal muscle in mice that were subjected to 0-72 h of fasting. Functional-category enrichment, text mining, and network analyses were employed to scrutinize the overall adaptation, aiming to identify responsive pathways, processes, and networks, and their regulation. The observed transcriptomics response did not follow the accepted "carbohydrate-lipid-protein" succession of expenditure of energy substrates. Instead, these processes were activated simultaneously in different organs during the entire period. The most prominent changes occurred in lipid and steroid metabolism, especially in the liver and kidney. They were accompanied by suppression of the immune response and cell turnover, particularly in the small intestine, and by increased proteolysis in the muscle. The brain was extremely well protected from the sequels of starvation. 60% of the identified overconnected transcription factors were organ-specific, 6% were common for 4 organs, with nuclear receptors as protagonists, accounting for almost 40% of all transcriptional regulators during fasting. The common transcription factors were PPARα, HNF4α, GCRα, AR (androgen receptor), SREBP1 and -2, FOXOs, EGR1, c-JUN, c-MYC, SP1, YY1, and ETS1. Our data strongly suggest that the control of metabolism in four metabolically active organs is exerted by transcription factors that are activated by nutrient signals and serves, at least partly, to prevent irreversible brain damage.
Asunto(s)
Ayuno/metabolismo , Regulación de la Expresión Génica , Metabolismo de los Lípidos , Inanición/metabolismo , Esteroides/metabolismo , Transcripción Genética , Animales , Perfilación de la Expresión Génica , Masculino , Ratones , Especificidad de Órganos , Factores de Transcripción/biosíntesisRESUMEN
Background: Primary sclerosing cholangitis (PSC) is a chronic inflammatory liver disease affecting the intra- and extrahepatic bile ducts, and is strongly associated with ulcerative colitis (UC). In this study, we explored the peripheral blood DNA methylome and its immune cell composition in patients with PSC-UC, UC, and healthy controls (HC) with the aim to develop a predictive assay in distinguishing patients with PSC-UC from those with UC alone. Methods: The peripheral blood DNA methylome of male patients with PSC and concomitant UC, UC and HCs was profiled using the Illumina HumanMethylation Infinium EPIC BeadChip (850K) array. Differentially methylated CpG position (DMP) and region (DMR) analyses were performed alongside gradient boosting classification analyses to discern PSC-UC from UC patients. As observed differences in the DNA methylome could be the result of differences in cellular populations, we additionally employed mass cytometry (CyTOF) to characterize the immune cell compositions. Results: Genome wide methylation analysis did not reveal large differences between PSC-UC and UC patients nor HCs. Nonetheless, using gradient boosting we were capable of discerning PSC-UC from UC with an area under the receiver operator curve (AUROC) of 0.80. Four CpG sites annotated to the NINJ2 gene were found to strongly contribute to the predictive performance. While CyTOF analyses corroborated the largely similar blood cell composition among patients with PSC-UC, UC and HC, a higher abundance of myeloid cells was observed in UC compared to PSC-UC patients. Conclusion: DNA methylation enables discerning PSC-UC from UC patients, with a potential for biomarker development.
Asunto(s)
Colangitis Esclerosante , Colitis Ulcerosa , Área Bajo la Curva , Biomarcadores , Moléculas de Adhesión Celular Neuronal , Colangitis Esclerosante/genética , Colitis Ulcerosa/complicaciones , Colitis Ulcerosa/diagnóstico , Colitis Ulcerosa/genética , Epigénesis Genética , Humanos , MasculinoRESUMEN
Fecal microbiota transplantation (FMT) has the potential to restore (bacterial and fungal) microbial imbalance in ulcerative colitis (UC) patients and contribute to disease remission. Here, we aimed to identify fecal fungal species associated with the induction of clinical remission and endoscopic response to FMT for patients with mild-to-moderate ulcerative colitis. We analyzed the internal transcribed spacer 1 (ITS1)-based mycobiota composition in fecal samples from patients (n = 31) and donors (n = 7) that participated previously in a double-blinded randomized control trial evaluating the efficacy of two infusions of donor FMT compared with autologous FMT. The abundance of the yeast genus Filobasidium in fecal material used for transplantation was shown to correlate with clinical remission following FMT, irrespective of its presence in the material of donor or autologous fecal microbiota transfer. The amplified sequence variants within the genus Filobasidium most closely resembled Filobasidium magnum. Monocyte-derived macrophages and HT29 epithelial cells were stimulated with fungal species. Especially Filobasidium floriforme elicited an IL10 response in monocyte-derived macrophages, along with secretion of other cytokines following stimulation with other Filobasidium species. No effect of Filobasidium spp. was seen on epithelial wound healing in scratch assays. In conclusion, the enriched presence of Filobasidium spp. in donor feces is associated with the positive response to FMT for patients with UC and hence it may serve as a predictive fungal biomarker for successful FMT.
RESUMEN
Irritable bowel syndrome (IBS) is a common disorder characterized by chronic abdominal pain and changes in bowel movements. Visceral hypersensitivity is thought to be responsible for pain complaints in a subset of patients. In an IBS-like animal model, visceral hypersensitivity was triggered by intestinal fungi, and lower mycobiota α-diversity in IBS patients was accompanied by a shift toward increased presence of Candida albicans and Saccharomyces cerevisiae. Yet, this shift was observed in hypersensitive as well as normosensitive patients and diversity did not differ between IBS subgroups. The latter suggests that, when a patient changes from hyper- to normosensitivity, the relevance of intestinal fungi is not necessarily reflected in compositional mycobiota changes. We now confirmed this notion by performing ITS1 sequencing on an existing longitudinal set of fecal samples. Since ITS1 methodology does not recognize variations within species, we next focused on heterogeneity within cultured healthy volunteer and IBS-derived C. albicans strains. We observed inter- and intra-individual genomic variation and partial clustering of strains from hypersensitive patients. Phenotyping showed differences related to growth, yeast-to-hyphae morphogenesis and gene expression, specifically of the gene encoding fungal toxin candidalysin. Our investigations emphasize the need for strain-specific cause-and-effect studies within the realm of IBS research.
Asunto(s)
Candida albicans , Síndrome del Colon Irritable , Dolor Abdominal/complicaciones , Animales , Candida albicans/genética , Heces/microbiología , Humanos , Intestinos , Síndrome del Colon Irritable/microbiologíaRESUMEN
The main endogenous source of glutamine is de novo synthesis in striated muscle via the enzyme glutamine synthetase (GS). The mice in which GS is selectively but completely eliminated from striated muscle with the Cre-loxP strategy (GS-KO/M mice) are, nevertheless, healthy and fertile. Compared with controls, the circulating concentration and net production of glutamine across the hindquarter were not different in fed GS-KO/M mice. Only a approximately 3-fold higher escape of ammonia revealed the absence of GS in muscle. However, after 20 h of fasting, GS-KO/M mice were not able to mount the approximately 4-fold increase in glutamine production across the hindquarter that was observed in control mice. Instead, muscle ammonia production was approximately 5-fold higher than in control mice. The fasting-induced metabolic changes were transient and had returned to fed levels at 36 h of fasting. Glucose consumption and lactate and ketone-body production were similar in GS-KO/M and control mice. Challenging GS-KO/M and control mice with intravenous ammonia in stepwise increments revealed that normal muscle can detoxify approximately 2.5 micromol ammonia/g muscle.h in a muscle GS-dependent manner, with simultaneous accumulation of urea, whereas GS-KO/M mice responded with accumulation of glutamine and other amino acids but not urea. These findings demonstrate that GS in muscle is dispensable in fed mice but plays a key role in mounting the adaptive response to fasting by transiently facilitating the production of glutamine. Furthermore, muscle GS contributes to ammonia detoxification and urea synthesis. These functions are apparently not vital as long as other organs function normally.
Asunto(s)
Amoníaco/química , Glutamato-Amoníaco Ligasa/metabolismo , Glutamina/metabolismo , Músculos/enzimología , Alelos , Amoníaco/toxicidad , Animales , Femenino , Privación de Alimentos , Genotipo , Masculino , Ratones , Ratones Transgénicos , Músculo Esquelético/enzimología , Factores Sexuales , Urea/químicaRESUMEN
Antimicrobial responses play an important role in maintaining intestinal heath. Recently we reported that miR-511 may regulate TLR4 responses leading to enhanced intestinal inflammation. However, the exact mechanism remained unclear. In this study we investigated the effect of miR-511 deficiency on anti-microbial responses and DSS-induced intestinal inflammation. miR-511-deficient mice were protected from DSS-induced colitis as shown by significantly lower disease activity index, weight loss and histology scores in the miR-511-deficient group. Furthermore, reduced inflammatory cytokine responses were observed in colons of miR-511 deficient mice. In vitro studies with bone marrow-derived M2 macrophages showed reduced TLR3 and TLR4 responses in miR-511-deficient macrophages compared to WT macrophages. Subsequent RNA sequencing revealed Wdfy1 as the potential miR-511 target. WDFY1 deficiency is related to impaired TLR3/TLR4 immune responses and the expression was downregulated in miR-511-deficient macrophages and colons. Together, this study shows that miR-511 is involved in the regulation of intestinal inflammation through downstream regulation of TLR3 and TLR4 responses via Wdfy1.