Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Front Cell Infect Microbiol ; 12: 939944, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36636722

RESUMEN

Genital Chlamydia is the most common bacterial sexually transmitted infection in the United States and worldwide. Previous studies indicate that the progression of chlamydial infection is influenced by various factors, including the female sex hormones estrogen and progesterone. Sex hormone levels naturally fluctuate in women throughout their menstrual cycle. Varying concentrations of estrogen and progesterone may impact the progression of chlamydial infection and the host's immune response to Chlamydia. Estrogen signals through estrogen receptors (ERs), ERα and ERß. These receptors are similar in structure and function, but are differentially expressed in tissues throughout the body, including the genital tract and on cells of the immune system. In this study, we used ovariectomized (OVT) BALB/c mice to investigate the impact of long-term administration of physiologically relevant concentrations of estrogen (E2), progesterone (P4), or a combination of E2/P4 on the progression of and immune response to C. muridarum infection. Additionally, we used ERα and ERß knockout C57/BL6 mice to determine the how ERs affect chlamydial infection and the resulting immune response. Estrogen exposure prevented C. muridarum infection in vaginally infected OVT mice exposed to E2 alone or in combination with P4, while OVT or Sham mice exposed to hormone free, P4 or depo-medroxyprogesterone acetate shed similar amounts of chlamydiae. The hormonal environment also altered T cell recruitment and IFNϵ production the genital tracts of infected OVT and Sham mice on day 10 post infection. The absence of ERα, but not ERß, in ER knockout mouse strains significantly changed the timing of C. muridarum infection. ERαKO mice shed significantly more chlamydiae at day 3 post infection and resolved the infection faster than WT or ERßKO animals. At day 9 post infection, flow cytometry showed that ERαKO mice had more T cells present and targeted RNA sequencing revealed increased expression of CD4 and FOXP3, suggesting that ERαKO mice had increased numbers of regulatory T cells compared to ERßKO and WT mice. Mock and chlamydia-infected ERαKO mice also expressed more IFNϵ early during infection. Overall, the data from these studies indicate that sex hormones and their receptors, particularly ERα and ERß, differentially affect C. muridarum infection in murine models of infection.


Asunto(s)
Infecciones por Chlamydia , Receptor alfa de Estrógeno , Receptor beta de Estrógeno , Animales , Femenino , Ratones , Infecciones por Chlamydia/microbiología , Chlamydia muridarum , Receptor alfa de Estrógeno/genética , Receptor beta de Estrógeno/genética , Estrógenos , Ratones Noqueados , Progesterona
2.
Sci Adv ; 8(17): eabm8965, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35476437

RESUMEN

Circulating lactate levels are a critical biomarker for sepsis and are positively correlated with sepsis-associated mortality. We investigated whether lactate plays a biological role in causing endothelial barrier dysfunction in sepsis. We showed that lactate causes vascular permeability and worsens organ dysfunction in CLP sepsis. Mechanistically, lactate induces ERK-dependent activation of calpain1/2 for VE-cadherin proteolytic cleavage, leading to the enhanced endocytosis of VE-cadherin in endothelial cells. In addition, we found that ERK2 interacts with VE-cadherin and stabilizes VE-cadherin complex in resting endothelial cells. Lactate-induced ERK2 phosphorylation promotes ERK2 disassociation from VE-cadherin. In vivo suppression of lactate production or genetic depletion of lactate receptor GPR81 mitigates vascular permeability and multiple organ injury and improves survival outcome in polymicrobial sepsis. Our study reveals that metabolic cross-talk between glycolysis-derived lactate and the endothelium plays a critical role in the pathophysiology of sepsis.


Asunto(s)
Antígenos CD , Cadherinas , Permeabilidad Capilar , Lactatos , Sepsis , Antígenos CD/metabolismo , Cadherinas/metabolismo , Células Endoteliales/metabolismo , Humanos , Lactatos/metabolismo , Sepsis/metabolismo , Sepsis/patología
3.
Methods Mol Biol ; 2542: 323-360, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36008676

RESUMEN

The cell wall contains mannans and glucans that are recognized by the host immune system. In this chapter, we will describe the methods to isolate mannans and glucans from the C. albicans cell wall. In addition, we describe how to determine purity, molecular size, and structure of the mannans and glucans. We also detail how to prepare the carbohydrates for in vitro, ex vivo, or in vivo use by describing endotoxin removal (depyrogenation), derivatization, and labeling and evaluation of bioactivity.


Asunto(s)
Glucanos , Mananos , Candida albicans , Pared Celular/química , Glucanos/análisis
4.
Curr Clin Microbiol Rep ; 6(2): 67-75, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31890462

RESUMEN

PURPOSE OF REVIEW: This review focuses specifically on the mechanisms by which female sex hormones, estrogen and progesterone, affect Chlamydia trachomatis infections in vivo and in vitro. RECENT FINDINGS: Recent data support previous work indicating that estrogen enhances chlamydial development via multiple mechanisms. Progesterone negatively impacts Chlamydia infections also through multiple mechanisms, particularly by altering the immune response. Conflicting data exist regarding the effect of synthetic hormones, such as those found in hormonal contraceptives, on chlamydial infections. SUMMARY: Numerous studies over the years have indicated that female sex hormones affect C. trachomatis infection. However, we still do not have a clear understanding of how these hormones alter Chlamydia disease transmission and progression. The studies reviewed here indicate that there are many variables that determine the outcome of Chlamydia/hormone interactions, including: 1) the specific hormone, 2) hormone concentration, 3) cell type or area of the genital tract, 4) hormone responsiveness of cell lines, and 5) animal models.

5.
Pathog Dis ; 76(8)2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30321322

RESUMEN

Chlamydia trachomatis/HSV-2 vaginal co-infections are seen clinically, suggesting that these sexually transmitted pathogens may interact. We previously established an intravaginal Chlamydia muridarum/HSV-2 super-infection model and observed that chlamydial pre-infection protects mice from a subsequent lethal HSV-2 challenge. However, the mechanism of protection remains unknown. The type I interferon, IFN-ß, binds to the type I interferon receptor (IFNR), elicits a host cellular antiviral response and inhibits HSV replication in vitro and in vivo. Previous studies have demonstrated that C. muridarum infection stimulates genital tract (GT) IFN-ß production; therefore, we hypothesized that chlamydial pre-infection protects mice from HSV-2 challenge via the IFN-ß/IFNR-induced antiviral response. To test this prediction, we quantified IFN-ß levels in vaginal swab samples. Detection of IFN-ß in C. muridarum singly infected, but not in mock-infected animals, prompted the use of the super-infection model in IFNR knockout (IFNR-/-) mice. We observed that C. muridarum pre-infection reduces HSV-2-induced mortality by 40% in wild-type mice and by 60% IFNR-/- mice. Severity of HSV-2 disease symptoms and viral shedding was also similarly reduced by C. muridarum pre-infection. These data indicate that, while chlamydial infection induces GT production of IFN-ß, type I IFN-induced antiviral responses are likely not required for the observed protective effect.


Asunto(s)
Infecciones por Chlamydia/complicaciones , Herpes Genital/prevención & control , Receptor de Interferón alfa y beta/metabolismo , Sobreinfección/prevención & control , Animales , Chlamydia muridarum/inmunología , Modelos Animales de Enfermedad , Femenino , Herpesvirus Humano 2/inmunología , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Vagina/inmunología
6.
Front Microbiol ; 9: 3270, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30692972

RESUMEN

Microbial interactions represent an understudied facet of human health and disease. In this study, the interactions that occur between Chlamydia trachomatis and the opportunistic fungal pathogen, Candida albicans were investigated. Candida albicans is a common component of the oral and vaginal microbiota responsible for thrush and vaginal yeast infections. Normally, Candida exist in the body as yeast. However, disruptions to the microbiota create conditions that allow expanded growth of Candida, conversion to the hyphal form, and tissue invasion. Previous studies have shown that a myriad of outcomes can occur when Candida albicans interacts with pathogenic bacteria. To determine if C. trachomatis physically interacts with C. albicans, we incubated chlamydial elementary bodies (EB) in medium alone or with C. albicans yeast or hyphal forms for 1 h. Following incubation, the samples were formaldehyde-fixed and processed for immunofluorescence assays using anti-chlamydial MOMP or anti- chlamydial LPS antibodies. Replicate samples were replenished with culture medium and incubated at 35°C for 0-120 h prior to fixation for immunofluorescence analysis or collection for EB infectivity assays. Data from this study indicates that both C. trachomatis serovar E and C. muridarum EB bind to C. albicans yeast and hyphal forms. This interaction was not blocked by pre-incubation of EB with the Candida cell wall components, mannan or ß-glucans, suggesting that EB interact with a Candida cell wall protein or other structure. Bound EB remained attached to C. albicans for a minimum of 5 days (120 h). Infectivity assays demonstrated that EB bound to C. albicans are infectious immediately following binding (0h). However, once bound to C. albicans, EB infectivity decreased at a faster rate than EB in medium alone. At 6h post binding, 40% of EB incubated in medium alone remained infectious compared to only 16% of EB bound to C. albicans. Likewise, pre-incubation of EB with laminarin, a soluble preparation of ß-glucan, alone or in combination with other fungal cell wall components significantly decreases chlamydial infectivity in HeLa cells. These data indicate that interactions between EB and C. albicans inhibit chlamydial infectivity, possibly by physically blocking EB interactions with host cell receptors.

7.
Artículo en Inglés | MEDLINE | ID: mdl-29322031

RESUMEN

Chlamydia trachomatis infections represent the predominant cause of bacterial sexually transmitted infections. As an obligate intracellular bacterium, C. trachomatis is dependent on the host cell for survival, propagation, and transmission. Thus, factors that affect the host cell, including nutrition, cell cycle, and environmental signals, have the potential to impact chlamydial development. Previous studies have demonstrated that activation of Wnt/ß-catenin signaling benefits C. trachomatis infections in fallopian tube epithelia. In cervical epithelial cells chlamydiae sequester ß-catenin within the inclusion. These data indicate that chlamydiae interact with the Wnt signaling pathway in both the upper and lower female genital tract (FGT). However, hormonal activation of canonical and non-canonical Wnt signaling pathways is an essential component of cyclic remodeling in another prominent area of the FGT, the endometrium. Given this information, we hypothesized that Wnt signaling would impact chlamydial infection in endometrial epithelial cells. To investigate this hypothesis, we analyzed the effect of Wnt inhibition on chlamydial inclusion development and elementary body (EB) production in two endometrial cell lines, Ishikawa (IK) and Hec-1B, in nonpolarized cell culture and in a polarized endometrial epithelial (IK)/stromal (SHT-290) cell co-culture model. Inhibition of Wnt by the small molecule inhibitor (IWP2) significantly decreased inclusion size in IK and IK/SHT-290 cultures (p < 0.005) and chlamydial infectivity (p ≤ 0.01) in both IK and Hec-1B cells. Confocal and electron microscopy analysis of chlamydial inclusions revealed that Wnt inhibition caused chlamydiae to become aberrant in morphology. EB formation was also impaired in IK, Hec-1B and IK/SHT-290 cultures regardless of whether Wnt inhibition occurred throughout, in the middle (24 hpi) or late (36 hpi) during the development cycle. Overall, these data lead us to conclude that Wnt signaling in the endometrium is a key host pathway for the proper development of C. trachomatis.


Asunto(s)
Infecciones por Chlamydia/microbiología , Chlamydia trachomatis/fisiología , Endometrio/microbiología , Células Epiteliales/microbiología , Interacciones Huésped-Patógeno , Vía de Señalización Wnt , Línea Celular , Técnicas de Cocultivo , Femenino , Humanos , Cuerpos de Inclusión/microbiología , Microscopía Confocal , Microscopía Electrónica , Modelos Biológicos
8.
PLoS One ; 11(1): e0146186, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26726882

RESUMEN

Chlamydia trachomatis and Herpes Simplex Virus-2 (HSV-2) genital tract co-infections have been reported in humans and studied in vitro but the clinical consequences are unknown. Limited epidemiologic evidence suggests that these co-infections could be more severe than single infections of either pathogen, but the host-pathogen interactions during co-infection remain uncharacterized. To determine whether disease progression and/or pathogen shedding differs between singly-infected and super-infected animals, we developed an in vivo super-infection model in which female BALB/c mice were vaginally infected with Chlamydia muridarum (Cm) followed later by HSV-2. Pre-infection with Chlamydia 3 or 9 days prior to HSV-2 super-infection conferred significant protection from HSV-2-induced neurologic disease and significantly reduced viral recovery compared to HSV-2 singly-infected controls. Neither protection from mortality nor reduced viral recovery were observed when mice were i) super-infected with HSV-2 on day 27 post Cm; ii) infected with UV-irradiated Cm and super-infected with HSV-2; or iii) azithromycin-treated prior to HSV-2 super-infection. Therefore, protection from HSV-2-induced disease requires active infection with viable chlamydiae and is not observed after chlamydial shedding ceases, either naturally or due to antibiotic treatment. Thus, Chlamydia-induced protection is transient and requires the continued presence of chlamydiae or their components. These data demonstrate that chlamydial pre-infection can alter progression of subsequent HSV-2 infection, with implications for HSV-2 transmission from co-infected humans.


Asunto(s)
Infecciones por Chlamydia/complicaciones , Chlamydia trachomatis/fisiología , Herpes Genital/prevención & control , Herpesvirus Humano 2/fisiología , Interacciones Huésped-Patógeno , Sobreinfección , Vaginosis Bacteriana/complicaciones , Animales , Azitromicina/uso terapéutico , Infecciones por Chlamydia/tratamiento farmacológico , Infecciones por Chlamydia/microbiología , Infecciones por Chlamydia/virología , Chlamydia trachomatis/aislamiento & purificación , Chlamydia trachomatis/efectos de la radiación , Coinfección , Progresión de la Enfermedad , Femenino , Herpes Genital/complicaciones , Herpes Genital/microbiología , Herpes Genital/virología , Herpesvirus Humano 2/aislamiento & purificación , Ratones , Ratones Endogámicos BALB C , Paraplejía/etiología , Paraplejía/virología , Factores de Tiempo , Vaginosis Bacteriana/tratamiento farmacológico , Vaginosis Bacteriana/microbiología , Vaginosis Bacteriana/virología , Carga Viral
9.
PLoS One ; 11(8): e0160511, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27486990

RESUMEN

Chlamydia trachomatis is the most common bacterial sexually transmitted pathogen, but more than 70% of patients fail to seek treatment due to the asymptomatic nature of these infections. Women suffer from numerous complications from chronic chlamydial infections, which include pelvic inflammatory disease and infertility. We previously demonstrated in culture that host cell nectin-1 knockdown significantly reduced chlamydial titers and inclusion size. Here, we sought to determine whether nectin-1 was required for chlamydial development in vivo by intravaginally infecting nectin-1-/- mice with Chlamydia muridarum and monitoring chlamydial shedding by chlamydial titer assay. We observed a significant reduction in chlamydial shedding in female nectin-1-/- mice compared to nectin-1+/+ control mice, an observation that was confirmed by PCR. Immunohistochemical staining in mouse cervical tissue confirmed that there are fewer chlamydial inclusions in Chlamydia-infected nectin-1-/- mice. Notably, anorectal chlamydial infections are becoming a substantial health burden, though little is known regarding the pathogenesis of these infections. We therefore established a novel male murine model of rectal chlamydial infection, which we used to determine whether nectin-1 is required for anorectal chlamydial infection in male mice. In contrast to the data from vaginal infection, no difference in rectal chlamydial shedding was observed when male nectin-1+/+ and nectin-1-/- mice were compared. Through the use of these two models, we have demonstrated that nectin-1 promotes chlamydial infection in the female genital tract but does not appear to contribute to rectal infection in male mice. These models could be used to further characterize tissue and sex related differences in chlamydial infection.


Asunto(s)
Moléculas de Adhesión Celular/fisiología , Infecciones por Chlamydia/genética , Enfermedades de los Genitales Femeninos/genética , Enfermedades del Recto/genética , Infecciones del Sistema Genital/genética , Animales , Moléculas de Adhesión Celular/genética , Chlamydia muridarum/crecimiento & desarrollo , Chlamydia muridarum/patogenicidad , Chlamydia trachomatis/crecimiento & desarrollo , Chlamydia trachomatis/patogenicidad , Femenino , Predisposición Genética a la Enfermedad , Enfermedades de los Genitales Femeninos/microbiología , Células HeLa , Interacciones Huésped-Patógeno/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nectinas , Enfermedades del Recto/microbiología
10.
Shock ; 46(6): 723-730, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27380533

RESUMEN

Zymosan-induced peritonitis is a model commonly used to study systemic inflammatory response syndrome and multiple organ dysfunction syndrome. However, effects of zymosan on cardiac function have not been reported. We evaluated cardiac responses to zymosan in mice and the role of ß-glucan and dectin-1 in mediating these responses. Temperature and cardiac function were evaluated before and after intraperitoneal (i.p.) injection of zymosan (100 or 500 mg/kg) or saline. Chronotropic and dromotropic functions were measured using electrocardiograms (ECGs) collected from conscious mice. Cardiac inotropic function was determined by echocardiography. High-dose zymosan caused a rapid and maintained hypothermia along with visual signs of illness. Baseline heart rate (HR) was unaffected but HR variability (HRV) increased, and there was a modest slowing of ventricular conduction. High-dose zymosan also caused prominent decreases in cardiac contractility at 4 and 24 h. Because zymosan is known to cause gastrointestinal tract pathology, peritoneal wash and blood samples were evaluated for bacteria at 24 h after zymosan or saline injection. Translocation of bacterial occurred in all zymosan-treated mice (n = 3), and two had bacteremia. Purified ß-glucan (50 and 125 mg/kg, i.p.) had no effect on temperature or ECG parameters. However, deletion of dectin-1 modified the ECG responses to high-dose zymosan; slowing of ventricular conduction and the increase in HRV were eliminated but a marked bradycardia appeared at 24 h after zymosan treatment. Zymosan-treated dectin-1 knockout mice also showed hypothermia and visual signs of illness. Fecal samples from dectin-1 knockout mice contained more bacteria than wild types, but zymosan caused less translocation of bacteria. Collectively, these findings demonstrate that zymosan-induced systemic inflammation causes cardiac dysfunction in mice. The data suggest that dectin-1-dependent and -independent mechanisms are involved. Although zymosan treatment causes translocation of bacteria, this effect does not have a major role in the overall systemic response to zymosan.


Asunto(s)
Lectinas Tipo C/metabolismo , Peritonitis/inducido químicamente , Peritonitis/metabolismo , Zimosan/toxicidad , Alarminas/metabolismo , Animales , Modelos Animales de Enfermedad , Inflamación/metabolismo , Masculino , Ratones , Ratones Noqueados , Insuficiencia Multiorgánica/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo
11.
Pathog Dis ; 73(4)2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25724891

RESUMEN

Studies indicate that estrogen enhances Chlamydia trachomatis serovar E infection in genital epithelial cells. Hormones have direct and indirect effects on endometrial epithelial cells. Estrogen and progesterone exposure induces endometrial stromal cells to release effectors that subsequently regulate growth and maturation of uterine epithelial cells. Estrogen enhances C. trachomatis infection by aiding entry and intracellular development in endometrial epithelial cell (Ishikawa, IK)/SHT-290 stromal cell co-culture. Enhanced chlamydial infection was mediated by direct estrogen-stimulated signaling events in epithelial cells and indirectly via estrogen-induced stromal cell effectors. The current study investigates the effects of hormones on chlamydial development using culture conditions representative of the menstrual cycle. Chlamydia trachomatis-infected IK or IK/SHT-290 cultures were exposed to 10(-8) M estrogen (E2), 10(-7) M progesterone (P4) or a combination of both hormones (10(-8) M E2 followed by 10(-9) M E2/10(-7) M P4). Chlamydial infectivity and progeny production were significantly decreased (30-66%) in cultures exposed to progesterone or estrogen/progesterone combination compared to estrogen alone. Thus, progesterone antagonized the positive effects of estrogen on chlamydial infection. These data indicate the susceptibility of endometrial epithelial cells to C. trachomatis infection during the menstrual cycle is altered by phase specific actions of sex hormones in the genital tract.


Asunto(s)
Chlamydia trachomatis/efectos de los fármacos , Chlamydia trachomatis/crecimiento & desarrollo , Endocitosis , Células Epiteliales/efectos de los fármacos , Células Epiteliales/microbiología , Estrógenos/metabolismo , Progesterona/metabolismo , Línea Celular , Chlamydia trachomatis/clasificación , Técnicas de Cocultivo , Femenino , Humanos , Serogrupo
12.
Artículo en Inglés | MEDLINE | ID: mdl-25414835

RESUMEN

Interaction of Herpes Simplex Virus (HSV) glycoprotein D (gD) with the host cell surface during Chlamydia trachomatis/HSV co-infection stimulates chlamydiae to become persistent. During viral entry, gD interacts with one of 4 host co-receptors: HVEM (herpes virus entry mediator), nectin-1, nectin-2 and 3-O-sulfated heparan sulfate. HVEM and nectin-1 are high-affinity entry receptors for both HSV-1 and HSV-2. Nectin-2 mediates HSV-2 entry but is inactive for HSV-1, while 3-O-sulfated heparan sulfate facilitates HSV-1, but not HSV-2, entry. Western blot and RT-PCR analyses demonstrate that HeLa and HEC-1B cells express nectin-1 and nectin-2, but not HVEM. Because both HSV-1 and HSV-2 trigger persistence, these data suggest that nectin-1 is the most likely co-receptor involved. Co-infections with nectin-1 specific HSV-1 mutants stimulate chlamydial persistence, as evidenced by aberrant body (AB) formation and decreased production of elementary bodies (EBs). These data indicate that nectin-1 is involved in viral-induced chlamydial persistence. However, inhibition of signal transduction molecules associated with HSV attachment and entry does not rescue EB production during C. trachomatis/HSV-2 co-infection. HSV attachment also does not activate Cdc42 in HeLa cells, as would be expected with viral stimulated activation of nectin-1 signaling. Additionally, immunofluorescence assays confirm that HSV infection decreases nectin-1 expression. Together, these observations suggest that gD binding-induced loss of nectin-1 signaling negatively influences chlamydial growth. Chlamydial infection studies in nectin-1 knockdown (NKD) HeLa cell lines support this hypothesis. In NKD cells, chlamydial inclusions are smaller in size, contain ABs, and produce significantly fewer infectious EBs compared to C. trachomatis infection in control HeLa cells. Overall, the current study indicates that the actions of host molecule, nectin-1, are required for successful C. trachomatis development.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Infecciones por Chlamydia/metabolismo , Infecciones por Chlamydia/microbiología , Chlamydia trachomatis/clasificación , Chlamydia trachomatis/fisiología , Interacciones Huésped-Patógeno , Animales , Moléculas de Adhesión Celular/genética , Línea Celular , Infecciones por Chlamydia/genética , Coinfección , Cricetinae , Expresión Génica , Técnicas de Inactivación de Genes , Células HeLa , Herpesvirus Humano 1 , Humanos , Cuerpos de Inclusión Viral , Nectinas , Estrés Oxidativo , Miembro 14 de Receptores del Factor de Necrosis Tumoral/genética , Miembro 14 de Receptores del Factor de Necrosis Tumoral/metabolismo , Transducción de Señal , Simplexvirus/fisiología , Acoplamiento Viral , Internalización del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA