Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Reprod Biomed Online ; 45(6): 1105-1117, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36117079

RESUMEN

RESEARCH QUESTION: Can better methods be developed to evaluate the performance and characteristics of an artificial intelligence model for evaluating the likelihood of clinical pregnancy based on analysis of day-5 blastocyst-stage embryos, such that performance evaluation more closely reflects clinical use in IVF procedures, and correlations with known features of embryo quality are identified? DESIGN: De-identified images were provided retrospectively or collected prospectively by IVF clinics using the artificial intelligence model in clinical practice. A total of 9359 images were provided by 18 IVF clinics across six countries, from 4709 women who underwent IVF between 2011 and 2021. Main outcome measures included clinical pregnancy outcome (fetal heartbeat at first ultrasound scan), embryo morphology score, and/or pre-implantation genetic testing for aneuploidy (PGT-A) results. RESULTS: A positive linear correlation of artificial intelligence scores with pregnancy outcomes was found, and up to a 12.2% reduction in time to pregnancy (TTP) was observed when comparing the artificial intelligence model with standard morphological grading methods using a novel simulated cohort ranking method. Artificial intelligence scores were significantly correlated with known morphological features of embryo quality based on the Gardner score, and with previously unknown morphological features associated with embryo ploidy status, including chromosomal abnormalities indicative of severity when considering embryos for transfer during IVF. CONCLUSION: Improved methods for evaluating artificial intelligence for embryo selection were developed, and advantages of the artificial intelligence model over current grading approaches were highlighted, strongly supporting the use of the artificial intelligence model in a clinical setting.


Asunto(s)
Inteligencia Artificial , Blastocisto , Femenino , Embarazo , Humanos , Estudios Retrospectivos , Implantación del Embrión , Aneuploidia , Fertilización In Vitro
2.
Opt Express ; 25(6): 6192-6214, 2017 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-28380973

RESUMEN

The development of a fast and reliable whispering gallery mode (WGM) simulator capable of generating spectra that are comparable with experiment is an important step forward for designing microresonators. We present a new model for generating WGM spectra for multilayer microspheres, which allows for an arbitrary number of concentric dielectric layers, and any number of embedded dipole sources or uniform distributions of dipole sources to be modeled. The mode excitation methods model embedded nanoparticles, or fluorescent dye coatings, from which normalized power spectra with accurate representation of the mode coupling efficiencies can be derived. In each case, the emitted power is expressed conveniently as a function of wavelength, with minimal computational load. The model makes use of the transfer-matrix approach, incorporating improvements to its stability, resulting in a reliable, general set of formulae for calculating whispering gallery mode spectra. In the specific cases of the dielectric microsphere and the single-layer coated microsphere, our model simplifies to confirmed formulae in the literature.

3.
Opt Express ; 23(8): 9924-37, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25969034

RESUMEN

A full three-dimensional Finite-Difference Time-Domain (FDTD)-based toolkit is developed to simulate the whispering gallery modes of a microsphere in the vicinity of a dipole source. This provides a guide for experiments that rely on efficient coupling to the modes of microspheres. The resultant spectra are compared to those of analytic models used in the field. In contrast to the analytic models, the FDTD method is able to collect flux from a variety of possible collection regions, such as a disk-shaped region. The customizability of the technique allows one to consider a variety of mode excitation scenarios, which are particularly useful for investigating novel properties of optical resonators, and are valuable in assessing the viability of a resonator for biosensing.

4.
Phys Rev Lett ; 114(13): 132002, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25884122

RESUMEN

For almost 50 years the structure of the Λ(1405) resonance has been a mystery. Even though it contains a heavy strange quark and has odd parity, its mass is lower than any other excited spin-1/2 baryon. Dalitz and co-workers speculated that it might be a molecular state of an antikaon bound to a nucleon. However, a standard quark-model structure is also admissible. Although the intervening years have seen considerable effort, there has been no convincing resolution. Here we present a new lattice QCD simulation showing that the strange magnetic form factor of the Λ(1405) vanishes, signaling the formation of an antikaon-nucleon molecule. Together with a Hamiltonian effective-field-theory model analysis of the lattice QCD energy levels, this strongly suggests that the structure is dominated by a bound antikaon-nucleon component. This result clarifies that not all states occurring in nature can be described within a simple quark model framework and points to the existence of exotic molecular meson-nucleon bound states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA