Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(19): e2315597121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38687786

RESUMEN

Snakebite envenoming is a neglected tropical disease that causes substantial mortality and morbidity globally. The venom of African spitting cobras often causes permanent injury via tissue-destructive dermonecrosis at the bite site, which is ineffectively treated by current antivenoms. To address this therapeutic gap, we identified the etiological venom toxins in Naja nigricollis venom responsible for causing local dermonecrosis. While cytotoxic three-finger toxins were primarily responsible for causing spitting cobra cytotoxicity in cultured keratinocytes, their potentiation by phospholipases A2 toxins was essential to cause dermonecrosis in vivo. This evidence of probable toxin synergism suggests that a single toxin-family inhibiting drug could prevent local envenoming. We show that local injection with the repurposed phospholipase A2-inhibiting drug varespladib significantly prevents local tissue damage caused by several spitting cobra venoms in murine models of envenoming. Our findings therefore provide a therapeutic strategy that may effectively prevent life-changing morbidity caused by snakebite in rural Africa.


Asunto(s)
Acetatos , Venenos Elapídicos , Indoles , Cetoácidos , Necrosis , Mordeduras de Serpientes , Animales , Mordeduras de Serpientes/tratamiento farmacológico , Ratones , Humanos , Acrilamidas/farmacología , Fosfolipasas A2/metabolismo , Naja , Elapidae , Queratinocitos/efectos de los fármacos , Piel/efectos de los fármacos , Piel/patología , Reposicionamiento de Medicamentos
2.
Development ; 148(20)2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34557907

RESUMEN

Human placental architecture is complex. Its surface epithelium, specialized for transport, forms by fusion of cytotrophoblast progenitors into multinucleated syncytiotrophoblasts. Near the uterine surface, these progenitors assume a different fate, becoming cancer-like cells that invade its lining and blood vessels. The latter process physically connects the placenta to the mother and shunts uterine blood to the syncytiotrophoblasts. Isolation of trophoblast subtypes is technically challenging. Upon removal, syncytiotrophoblasts disintegrate and invasive cytotrophoblasts are admixed with uterine cells. We used laser capture to circumvent these obstacles. This enabled isolation of syncytiotrophoblasts and two subpopulations of invasive cytotrophoblasts from cell columns and the endovascular compartment of spiral arteries. Transcriptional profiling revealed numerous genes, the placental or trophoblast expression of which was not known, including neurotensin and C4ORF36. Using mass spectrometry, discovery of differentially expressed mRNAs was extended to the protein level. We also found that invasive cytotrophoblasts expressed cannabinoid receptor 1. Unexpectedly, screening agonists and antagonists showed that signals from this receptor promote invasion. Together, these results revealed previously unseen gene expression patterns that translate to the protein level. Our data also suggested that endogenous and exogenous cannabinoids can affect human placental development.


Asunto(s)
Cannabinoides/metabolismo , ARN/metabolismo , Transducción de Señal/fisiología , Trofoblastos/citología , Trofoblastos/metabolismo , Femenino , Humanos , Placenta/metabolismo , Placentación/fisiología , Embarazo , ARN/genética , Transcripción Genética/genética
3.
Am J Obstet Gynecol ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38697337

RESUMEN

BACKGROUND: The Multi-Omics for Mothers and Infants consortium aims to improve birth outcomes. Preterm birth is a major obstetrical complication globally and causes significant infant and childhood morbidity and mortality. OBJECTIVE: We analyzed placental samples (basal plate, placenta or chorionic villi, and the chorionic plate) collected by the 5 Multi-Omics for Mothers and Infants sites, namely The Alliance for Maternal and Newborn Health Improvement Bangladesh, The Alliance for Maternal and Newborn Health Improvement Pakistan, The Alliance for Maternal and Newborn Health Improvement Tanzania, The Global Alliance to Prevent Prematurity and Stillbirth Bangladesh, and The Global Alliance to Prevent Prematurity and Stillbirth Zambia. The goal was to analyze the morphology and gene expression of samples collected from preterm and uncomplicated term births. STUDY DESIGN: The teams provided biopsies from 166 singleton preterm (<37 weeks' gestation) and 175 term (≥37 weeks' gestation) deliveries. The samples were fixed in formalin and paraffin embedded. Tissue sections from these samples were stained with hematoxylin and eosin and subjected to morphologic analyses. Other placental biopsies (n=35 preterm, 21 term) were flash frozen, which enabled RNA purification for bulk transcriptomics. RESULTS: The morphologic analyses revealed a surprisingly high rate of inflammation that involved the basal plate, placenta or chorionic villi, and the chorionic plate. The rate of inflammation in chorionic villus samples, likely attributable to chronic villitis, ranged from 25% (Pakistan site) to 60% (Zambia site) of cases. Leukocyte infiltration in this location vs in the basal plate or chorionic plate correlated with preterm birth. Our transcriptomic analyses identified 267 genes that were differentially expressed between placentas from preterm vs those from term births (123 upregulated, 144 downregulated). Mapping the differentially expressed genes onto single-cell RNA sequencing data from human placentas suggested that all the component cell types, either singly or in subsets, contributed to the observed dysregulation. Consistent with the histopathologic findings, gene ontology analyses highlighted the presence of leukocyte infiltration or activation and inflammatory responses in both the fetal and maternal compartments. CONCLUSION: The relationship between placental inflammation and preterm birth is appreciated in developed countries. In this study, we showed that this link also exists in developing geographies. In addition, among the participating sites, we found geographic- and population-based differences in placental inflammation and preterm birth, suggesting the importance of local factors.

4.
Environ Health ; 23(1): 66, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044276

RESUMEN

BACKGROUND: Fluoride exposure during pregnancy has been associated with various effects on offspring, including changes in behavior and IQ. To provide clues to possible mechanisms by which fluoride may affect human fetal development, we completed proteomic analyses of cord blood serum collected from second-trimester pregnant women residing in northern California, USA. OBJECTIVE: To identify changes in cord blood proteins associated with maternal serum fluoride concentration in pregnant women. METHODS: The proteomes of 19 archived second-trimester cord blood samples from women living in northern California, USA, and having varied serum fluoride concentrations, were analyzed by quantitative mass spectrometry. The 327 proteins that were quantified were characterized by their abundance relative to maternal serum fluoride concentration, and subjected to pathway analyses using PANTHER and Ingenuity Pathway Analysis processes. RESULTS: Pathway analyses showed significant increases in process related to reactive oxygen species and cellular oxidant detoxification, associated with increasing maternal serum fluoride concentrations. Pathways showing significant decreases included complement cascade, suggesting alterations in alterations in process associated with inflammation. CONCLUSION: Maternal fluoride exposure, as measured by serum fluoride concentrations in a small, but representative sample of women from northern California, USA, showed significant changes in the second trimester cord blood proteome relative to maternal serum fluoride concentration.


Asunto(s)
Sangre Fetal , Fluoruros , Segundo Trimestre del Embarazo , Proteoma , Humanos , Sangre Fetal/química , Femenino , Proyectos Piloto , Fluoruros/sangre , Embarazo , Proteoma/análisis , California , Adulto , Segundo Trimestre del Embarazo/sangre , Exposición Materna , Adulto Joven , Contaminantes Ambientales/sangre
5.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34750266

RESUMEN

Agricultural landscapes are the largest source of anthropogenic nitrous oxide (N2O) emissions, but their specific sources and magnitudes remain contested. In the US Corn Belt, a globally important N2O source, in-field soil emissions were reportedly too small to account for N2O measured in the regional atmosphere, and disproportionately high N2O emissions from intermittent streams have been invoked to explain the discrepancy. We collected 3 y of high-frequency (4-h) measurements across a topographic gradient, including a very poorly drained (intermittently flooded) depression and adjacent upland soils. Mean annual N2O emissions from this corn-soybean rotation (7.8 kg of N2O-N ha-1⋅y-1) were similar to a previous regional top-down estimate, regardless of landscape position. Synthesizing other Corn Belt studies, we found mean emissions of 5.6 kg of N2O-N ha-1⋅y-1 from soils with similar drainage to our transect (moderately well-drained to very poorly drained), which collectively comprise 60% of corn-soybean-cultivated soils. In contrast, strictly well-drained soils averaged only 2.3 kg of N2O-N ha-1⋅y-1 Our results imply that in-field N2O emissions from soils with moderately to severely impaired drainage are similar to regional mean values and that N2O emissions from well-drained soils are not representative of the broader Corn Belt. On the basis of carbon dioxide equivalents, the warming effect of direct N2O emissions from our transect was twofold greater than optimistic soil carbon gains achievable from agricultural practice changes. Despite the recent focus on soil carbon sequestration, addressing N2O emissions from wet Corn Belt soils may have greater leverage in achieving climate sustainability.


Asunto(s)
Óxido Nitroso/química , Suelo/química , Zea mays/química , Agricultura/métodos , Atmósfera/química , Dióxido de Carbono/química , Clima , Glycine max/química
6.
Glob Chang Biol ; 29(20): 5968-5980, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37448171

RESUMEN

Confidence in model estimates of soil CO2 flux depends on assumptions regarding fundamental mechanisms that control the decomposition of litter and soil organic carbon (SOC). Multiple hypotheses have been proposed to explain the role of lignin, an abundant and complex biopolymer that may limit decomposition. We tested competing mechanisms using data-model fusion with modified versions of the CN-SIM model and a 571-day laboratory incubation dataset where decomposition of litter, lignin, and SOC was measured across 80 soil samples from the National Ecological Observatory Network. We found that lignin decomposition consistently decreased over time in 65 samples, whereas in the other 15 samples, lignin decomposition subsequently increased. These "lagged-peak" samples can be predicted by low soil pH, high extractable Mn, and fungal community composition as measured by ITS PC2 (the second principal component of an ordination of fungal ITS amplicon sequences). The highest-performing model incorporated soil biogeochemical factors and daily dynamics of substrate availability (labile bulk litter:lignin) that jointly represented two hypotheses (C substrate limitation and co-metabolism) previously thought to influence lignin decomposition. In contrast, models representing either hypothesis alone were biased and underestimated cumulative decomposition. Our findings reconcile competing hypotheses of lignin decomposition and suggest the need to precisely represent the role of lignin and consider soil metal and fungal characteristics to accurately estimate decomposition in Earth-system models.


Asunto(s)
Lignina , Suelo , Suelo/química , Carbono/química
7.
BMC Biol ; 20(1): 148, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35761243

RESUMEN

BACKGROUND: Venoms are ecological innovations that have evolved numerous times, on each occasion accompanied by the co-evolution of specialised morphological and behavioural characters for venom production and delivery. The close evolutionary interdependence between these characters is exemplified by animals that control the composition of their secreted venom. This ability depends in part on the production of different toxins in different locations of the venom gland, which was recently documented in venomous snakes. Here, we test the hypothesis that the distinct spatial distributions of toxins in snake venom glands are an adaptation that enables the secretion of venoms with distinct ecological functions. RESULTS: We show that the main defensive and predatory peptide toxins are produced in distinct regions of the venom glands of the black-necked spitting cobra (Naja nigricollis), but these distributions likely reflect developmental effects. Indeed, we detected no significant differences in venom collected via defensive 'spitting' or predatory 'biting' events from the same specimens representing multiple lineages of spitting cobra. We also found the same spatial distribution of toxins in a non-spitting cobra and show that heterogeneous toxin distribution is a feature shared with a viper with primarily predatory venom. CONCLUSIONS: Our findings suggest that heterogeneous distributions of toxins are not an adaptation to controlling venom composition in snakes. Instead, it likely reflects physiological constraints on toxin production by the venom glands, opening avenues for future research on the mechanisms of functional differentiation of populations of protein-secreting cells within adaptive contexts.


Asunto(s)
Venenos de Serpiente , Serpientes , Animales , Venenos de Serpiente/química
8.
J Chem Phys ; 156(20): 200901, 2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35649875

RESUMEN

Path sampling approaches have become invaluable tools to explore the mechanisms and dynamics of the so-called rare events that are characterized by transitions between metastable states separated by sizable free energy barriers. Their practical application, in particular to ever more complex molecular systems, is, however, not entirely trivial. Focusing on replica exchange transition interface sampling (RETIS) and forward flux sampling (FFS), we discuss a range of analysis tools that can be used to assess the quality and convergence of such simulations, which is crucial to obtain reliable results. The basic ideas of a step-wise evaluation are exemplified for the study of nucleation in several systems with different complexities, providing a general guide for the critical assessment of RETIS and FFS simulations.


Asunto(s)
Simulación de Dinámica Molecular , Entropía
9.
Can J Physiol Pharmacol ; 100(11): 1065-1076, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35985040

RESUMEN

Despite numerous therapeutic options, multidrug resistance (MDR) remains an obstacle to successful breast cancer therapy. Jadomycin B, a natural product derived from Streptomyces venezuelae ISP5230, maintains cytotoxicity in MDR human breast cancer cells. Our objectives were to evaluate the pharmacokinetics, toxicity, anti-tumoral, and anti-metastatic effects of jadomycin B in zebrafish larvae and mice. In a zebrafish larval xenograft model, jadomycin B significantly reduced the proliferation of human MDA-MB-231 cells at or below its maximum tolerated dose (40 µm). In female Balb/C mice, a single intraperitoneal dose (6 mg/kg) was rapidly absorbed with a maximum serum concentration of 3.4 ± 0.27 µm. Jadomycin B concentrations declined biphasically with an elimination half-life of 1.7 ± 0.058 h. In the 4T1 mouse mammary carcinoma model, jadomycin B (12 mg/kg every 12 h from day 6 to 15 after tumor cell injection) decreased primary tumor volume compared to vehicle control. Jadomycin B-treated mice did not exhibit weight loss, nor significant increases in biomarkers of impaired hepatic (alanine aminotransferase) and renal (creatinine) function. In conclusion, jadomycin B demonstrated a good safety profile and provided partial anti-tumoral effects, warranting further dose-escalation safety and efficacy studies in MDR breast cancer models.


Asunto(s)
Neoplasias de la Mama , Pez Cebra , Humanos , Femenino , Animales , Ratones , Proyectos Piloto , Xenoinjertos
10.
Compr Rev Food Sci Food Saf ; 21(4): 3480-3506, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35638353

RESUMEN

Consumption of raw oysters, whether wild-caught or aquacultured, may increase health risks for humans. Vibrio vulnificus and Vibrio parahaemolyticus are two potentially pathogenic bacteria that can be concentrated in oysters during filter feeding. As Vibrio abundance increases in coastal waters worldwide, ingesting raw oysters contaminated with V. vulnificus and V. parahaemolyticus can possibly result in human illness and death in susceptible individuals. Depuration is a postharvest processing method that maintains oyster viability while they filter clean salt water that either continuously flows through a holding tank or is recirculated and replenished periodically. This process can reduce endogenous bacteria, including coliforms, thus providing a safer, live oyster product for human consumption; however, depuration of Vibrios has presented challenges. When considering the difficulty of removing endogenous Vibrios in oysters, a more standardized framework of effective depuration parameters is needed. Understanding Vibrio ecology and its relation to certain depuration parameters could help optimize the process for the reduction of Vibrio. In the past, researchers have manipulated key depuration parameters like depuration processing time, water salinity, water temperature, and water flow rate and explored the use of processing additives to enhance disinfection in oysters. In summation, depuration processing from 4 to 6 days, low temperature, high salinity, and flowing water effectively reduced V. vulnificus and V. parahaemolyticus in live oysters. This review aims to emphasize trends among the results of these past works and provide suggestions for future oyster depuration studies.


Asunto(s)
Ostreidae , Vibrio parahaemolyticus , Vibrio vulnificus , Animales , Humanos , Ostreidae/microbiología , Alimentos Marinos/microbiología , Agua
11.
Glob Chang Biol ; 27(23): 6166-6180, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34464997

RESUMEN

Oxygen (O2 ) limitation contributes to persistence of large carbon (C) stocks in saturated soils. However, many soils experience spatiotemporal O2  fluctuations impacted by climate and land-use change, and O2 -mediated climate feedbacks from soil greenhouse gas emissions remain poorly constrained. Current theory and models posit that anoxia uniformly suppresses carbon (C) decomposition. Here we show that periodic anoxia may sustain or even stimulate decomposition over weeks to months in two disparate soils by increasing turnover and/or size of fast-cycling C pools relative to static oxic conditions, and by sustaining decomposition of reduced organic molecules. Cumulative C losses did not decrease consistently as cumulative O2 exposure decreased. After >1 year, soils anoxic for 75% of the time had similar C losses as the oxic control but nearly threefold greater climate impact on a CO2 -equivalent basis (20-year timescale) due to high methane (CH4 ) emission. A mechanistic model incorporating current theory closely reproduced oxic control results but systematically underestimated C losses under O2  fluctuations. Using a model-experiment integration (ModEx) approach, we found that models were improved by varying microbial maintenance respiration and the fraction of CH4 production in total C mineralization as a function of O2 availability. Consistent with thermodynamic expectations, the calibrated models predicted lower microbial C-use efficiency with increasing anoxic duration in one soil; in the other soil, dynamic organo-mineral interactions implied by our empirical data but not represented in the model may have obscured this relationship. In both soils, the updated model was better able to capture transient spikes in C mineralization that occurred following anoxic-oxic transitions, where decomposition from the fluctuating-O2 treatments greatly exceeded the control. Overall, our data-model comparison indicates that incorporating emergent biogeochemical properties of soil O2 variability will be critical for effectively modeling C-climate feedbacks in humid ecosystems.


Asunto(s)
Carbono , Suelo , Dióxido de Carbono/análisis , Ecosistema , Metano , Oxígeno
12.
Psychooncology ; 30(7): 989-1008, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33724608

RESUMEN

AIM: The purpose of this systematic review was to determine the effectiveness of self-management interventions for older adults with cancer and to determine the effective components of said interventions. METHODS: We conducted a systematic review of self-management interventions for older adults (65+) with cancer guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement. We conducted an exhaustive search of the following databases: Ageline, AMED, ASSIA, CINAHL, Cochrane, Embase, Medline, PsychINFO, and Sociological Abstracts. We assessed for quality using the Cochrane Risk of Bias tool and Down & Black for quasi-experimental studies, with data synthesized in a narrative and tabular format. RESULTS: Sixteen thousand nine hundred and eight-five titles and abstracts were screened, subsequently 452 full-text papers were reviewed by two independent reviewers, of which 13 full-text papers were included in the final review. All self-management interventions included in this review measured Quality of Life; other outcomes included mood, self-care activity, supportive care needs, self-advocacy, pain intensity, and analgesic intake; only one intervention measured frailty. Effective interventions were delivered by a multidisciplinary teams (n = 4), nurses (n = 3), and mental health professionals (n = 1). Self-management core skills most commonly targeted included: problem solving; behavioural self-monitoring and tailoring; and settings goals and action planning. CONCLUSIONS: Global calls to action argue for increased emphasize on self-management but presently, few interventions exist that explicitly target the self-management needs of older adults with cancer. Future work should focus on explicit pathways to support older adults and their caregivers to prepare for and engage in cancer self-management processes and behaviours.


Asunto(s)
Neoplasias , Automanejo , Anciano , Cuidadores , Humanos , Neoplasias/terapia , Calidad de Vida
13.
Chem Lett ; 50(5): 1095-1103, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36051866

RESUMEN

Heme is involved in signal transduction by either acting as a cofactor of heme-based gas/redox sensors or binding reversely to heme-responsive proteins. Bacteria respond to low concentrations of nitric oxide (NO) to modulate group behaviors such as biofilms through the well-characterized H-NOX family and the newly discovered heme sensor protein NosP. NosP shares functional similarities with H-NOX as a heme-based NO sensor; both regulate two-component systems and/or cyclic-di-GMP metabolizing enzymes, playing roles in processes such as quorum sensing and biofilm regulation. Interestingly, aside from its role in NO signaling, recent studies suggest that NosP may also sense labile heme. In this Highlight Review, we briefly summarize H-NOX-dependent NO signaling in bacteria, then focus on recent advances in NosP-mediated NO signaling and labile heme sensing.

14.
Glob Chang Biol ; 26(6): 3726-3737, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32227617

RESUMEN

Oxygen (O2 ) limitation is generally understood to suppress oil carbon (C) decomposition and is a key mechanism impacting terrestrial C stocks under global change. Yet, O2 limitation may differentially impact kinetic or thermodynamic versus physicochemical C protection mechanisms, challenging our understanding of how soil C may respond to climate-mediated changes in O2 dynamics. Although O2 limitation may suppress decomposition of new litter C inputs, release of physicochemically protected C due to iron (Fe) reduction could potentially sustain soil C losses. To test this trade-off, we incubated two disparate upland soils that experience periodic O2 limitation-a tropical rainforest Oxisol and a temperate cropland Mollisol-with added litter under either aerobic (control) or anaerobic conditions for 1 year. Anoxia suppressed total C loss by 27% in the Oxisol and by 41% in the Mollisol relative to the control, mainly due to the decrease in litter-C decomposition. However, anoxia sustained or even increased decomposition of native soil-C (11.0% vs. 12.4% in the control for the Oxisol and 12.5% vs. 5.3% in the control for the Mollisol, in terms of initial soil C mass), and it stimulated losses of metal- or mineral-associated C. Solid-state 13 C nuclear magnetic resonance spectroscopy demonstrated that anaerobic conditions decreased protein-derived C but increased lignin- and carbohydrate-C relative to the control. Our results indicate a trade-off between physicochemical and kinetic/thermodynamic C protection mechanisms under anaerobic conditions, whereby decreased decomposition of litter C was compensated by more extensive loss of mineral-associated soil C in both soils. This challenges the common assumption that anoxia inherently protects soil C and illustrates the vulnerability of mineral-associated C under anaerobic events characteristic of a warmer and wetter future climate.


Asunto(s)
Carbono , Suelo , Anaerobiosis , Cambio Climático , Lignina
15.
Glob Chang Biol ; 26(9): 5320-5332, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32533721

RESUMEN

The ongoing global change is multi-faceted, but the interactive effects of multiple drivers on the persistence of soil carbon (C) are poorly understood. We examined the effects of warming, reactive nitrogen (N) inputs (12 g N m-2  year-1 ) and altered precipitation (+ or - 30% ambient) on soil aggregates and mineral-associated C in a 4 year manipulation experiment with a semi-arid grassland on China's Loess Plateau. Our results showed that in the absence of N inputs, precipitation additions significantly enhanced soil aggregation and promoted the coupling between aggregation and both soil fungal biomass and exchangeable Mg2+ . However, N inputs negated the promotional effects of increased precipitation, mainly through suppressing fungal growth and altering soil pH and clay-Mg2+ -OC bridging. Warming increased C content in the mineral-associated fraction, likely by increasing inputs of root-derived C, and reducing turnover of existing mineral-associated C due to suppression of fungal growth and soil respiration. Together, our results provide new insights into the potential mechanisms through which multiple global change factors control soil C persistence in arid and semi-arid grasslands. These findings suggest that the interactive effects among global change factors should be incorporated to predict the soil C dynamics under future global change scenarios.


Asunto(s)
Carbono , Suelo , Ecosistema , Pradera , Nitrógeno/análisis
16.
Glob Chang Biol ; 26(12): 6631-6643, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33064359

RESUMEN

Soils represent the largest terrestrial reservoir of organic carbon, and the balance between soil organic carbon (SOC) formation and loss will drive powerful carbon-climate feedbacks over the coming century. To date, efforts to predict SOC dynamics have rested on pool-based models, which assume classes of SOC with internally homogenous physicochemical properties. However, emerging evidence suggests that soil carbon turnover is not dominantly controlled by the chemistry of carbon inputs, but rather by restrictions on microbial access to organic matter in the spatially heterogeneous soil environment. The dynamic processes that control the physicochemical protection of carbon translate poorly to pool-based SOC models; as a result, we are challenged to mechanistically predict how environmental change will impact movement of carbon between soils and the atmosphere. Here, we propose a novel conceptual framework to explore controls on belowground carbon cycling: Probabilistic Representation of Organic Matter Interactions within the Soil Environment (PROMISE). In contrast to traditional model frameworks, PROMISE does not attempt to define carbon pools united by common thermodynamic or functional attributes. Rather, the PROMISE concept considers how SOC cycling rates are governed by the stochastic processes that influence the proximity between microbial decomposers and organic matter, with emphasis on their physical location in the soil matrix. We illustrate the applications of this framework with a new biogeochemical simulation model that traces the fate of individual carbon atoms as they interact with their environment, undergoing biochemical transformations and moving through the soil pore space. We also discuss how the PROMISE framework reshapes dialogue around issues related to SOC management in a changing world. We intend the PROMISE framework to spur the development of new hypotheses, analytical tools, and model structures across disciplines that will illuminate mechanistic controls on the flow of carbon between plant, soil, and atmospheric pools.


Asunto(s)
Carbono , Suelo , Ciclo del Carbono , Clima , Plantas
17.
Ecotoxicology ; 29(8): 1207-1220, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31643013

RESUMEN

At a "clean air" trade winds site in northeastern Puerto Rico, we found an apparent paradox: atmospheric total mercury (THg) deposition was highest of any site in the USA Mercury Deposition Network, but assimilation into the local food web was quite low. Avian blood THg concentrations (n = 31, from eight species in five foraging guilds) ranged widely from 0.2 to 32 ng g-1 (median of 4.3 ng g-1). Within this population, THg was significantly greater at a low-elevation site near a wetland compared to an upland montane site, even when the comparison was limited to a single species. Overall, however, THg concentrations were approximately an order of magnitude lower than comparable populations in the continental U.S. In surface soil and sediment, potential rates of demethylation were 3 to 9-fold greater than those for Hg(II)-methylation (based on six radiotracer amendment incubations), but rates of change of ambient MeHg pools showed a slight net positive Hg(II)-methylation. Thus, the resolution of the paradox is that MeHg degradation approximately keeps pace with MeHg production in this landscape. Further, any net production of MeHg is subject to frequent flushing by high rainfall on chronically wet soils. The interplay of these microbial processes and hydrology appears to shield the local food web from adverse effects of high atmospheric mercury loading. This scenario may play out in other humid tropical ecosystems as well, but it is difficult to evaluate because coordinated studies of Hg deposition, methylation, and trophic uptake have not been conducted at other tropical sites.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Mercurio/análisis , Puerto Rico
18.
Environ Sci Technol ; 53(13): 7522-7531, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31177774

RESUMEN

A modern paradigm of soil organic matter proposes that persistent carbon (C) derives primarily from microbial residues interacting with minerals, challenging older ideas that lignin moieties contribute to soil C because of inherent recalcitrance. We proposed that aspects of these old and new paradigms can be partially reconciled by considering interactions between lignin decomposition products and redox-sensitive iron (Fe) minerals. An Fe-rich tropical soil (with C4 litter and either 13C-labeled or unlabeled lignin) was pretreated with different durations of anaerobiosis (0-12 days) and incubated aerobically for 317 days. Only 5.7 ± 0.2% of lignin 13C was mineralized to CO2 versus 51.2 ± 0.4% of litter C. More added lignin-derived C (48.2 ± 0.9%) than bulk litter-derived C (30.6 ± 0.7%) was retained in mineral-associated organic matter (MAOM; density >1.8 g cm-3), and 12.2 ± 0.3% of lignin-derived C vs 6.4 ± 0.1% of litter C accrued in clay-sized (<2 µm) MAOM. Longer anaerobic pretreatments increased added lignin-derived C associated with Fe, according to extractions and nanoscale secondary ion mass spectrometry (NanoSIMS). Microbial residues are important, but lignin-derived C may also contribute disproportionately to MAOM relative to bulk litter-derived C, especially following redox-sensitive biogeochemical interactions.


Asunto(s)
Carbono , Suelo , Lignina , Minerales , Microbiología del Suelo
19.
J Chem Phys ; 151(14): 144109, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31615250

RESUMEN

While ionic liquids have promising applications as industrial solvents, predicting their fluid phase properties and coexistence remains a challenge. Grand canonical Monte Carlo simulation is an effective method for such predictions, but equilibration is hampered by the apparent requirement to insert and delete neutral sets of ions simultaneously in order to maintain charge neutrality. For relatively high densities and low temperatures, previously developed methods have been shown to be essential in improving equilibration by gradual insertion and deletion of these neutral sets of ions. We introduce an expanded ensemble approach which may be used in conjunction with these existing methods to further improve efficiency. Individual ions are inserted or deleted in one Monte Carlo trial rather than simultaneous insertion/deletion of neutral sets. We show how charge neutrality is maintained and show rigorous quantitative agreement between the conventional and the proposed expanded ensemble approaches, but with up to an order of magnitude increase in efficiency at high densities. The expanded ensemble approach is also more straightforward to implement than simultaneous insertion/deletion of neutral sets, and its implementation is demonstrated within open source software.

20.
Ecotoxicol Environ Saf ; 172: 203-209, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30710770

RESUMEN

Copper and zinc accumulation in macroalgae is a complex issue. While these metals exist as micronutrients and can serve to add nutritional value to the macroalgae when consumed by both plants and animals, elevated levels of the metals can reduce growth or even kill the algae. Many water parameters can influence the toxicity of the metals, though past studies have rarely isolated individual water parameters. This study aimed to independently determine the effects that salinity and alkalinity have on the growth and accumulation of these two metals on the macroalgae Ulva fasciata, distinguishing the effects of salinity and alkalinity as whole parameters from the collective effects of the water different constituents. The effect of salinity was determined using sodium chloride additions rather than seawater dilution, as performed in past studies, while alkalinity was tested using sodium bicarbonate additions to artificial seawater. The results of the study reinforce previous findings that copper is very toxic to macroalgae, even at low concentrations (50 µg L-1) though the effects of zinc remain inconclusive at 50 µg L-1, since the experiment was conducted over only a two-week trial period. The research suggests that salinity and alkalinity have no significant effect on the toxicity of copper to the growth of the macroalgae, but alkalinity significantly reduced copper and increased zinc accumulation in U. fasciata. The results of this study warrant further research in the field to investigate which other components of seawater and macroalgae reduce metal toxicity in the macroalgae. Additionally, these findings suggest the need for further refinement of toxicity models when adapted to macroalgae.


Asunto(s)
Cobre/metabolismo , Ulva/efectos de los fármacos , Contaminantes Químicos del Agua/metabolismo , Zinc/metabolismo , Animales , Cobre/toxicidad , Salinidad , Agua de Mar/química , Cloruro de Sodio/análisis , Cloruro de Sodio/farmacología , Ulva/crecimiento & desarrollo , Ulva/metabolismo , Agua , Contaminantes Químicos del Agua/toxicidad , Zinc/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA