Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35101984

RESUMEN

Earth's surface has undergone a protracted oxygenation, which is commonly assumed to have profoundly affected the biosphere. However, basic aspects of this history are still debated-foremost oxygen (O2) levels in the oceans and atmosphere during the billion years leading up to the rise of algae and animals. Here we use isotope ratios of iron (Fe) in ironstones-Fe-rich sedimentary rocks deposited in nearshore marine settings-as a proxy for O2 levels in shallow seawater. We show that partial oxidation of dissolved Fe(II) was characteristic of Proterozoic shallow marine environments, whereas younger ironstones formed via complete oxidation of Fe(II). Regardless of the Fe(II) source, partial Fe(II) oxidation requires low O2 in the shallow oceans, settings crucial to eukaryotic evolution. Low O2 in surface waters can be linked to markedly low atmospheric O2-likely requiring less than 1% of modern levels. Based on our records, these conditions persisted (at least periodically) until a shift toward higher surface O2 levels between ca 900 and 750 Ma, coincident with an apparent rise in eukaryotic ecosystem complexity. This supports the case that a first-order shift in surface O2 levels during this interval may have selected for life modes adapted to more oxygenated habitats.

2.
Nature ; 559(7715): 613-616, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30022163

RESUMEN

The global biosphere is commonly assumed to have been less productive before the rise of complex eukaryotic ecosystems than it is today1. However, direct evidence for this assertion is lacking. Here we present triple oxygen isotope measurements (∆17O) from sedimentary sulfates from the Sibley basin (Ontario, Canada) dated to about 1.4 billion years ago, which provide evidence for a less productive biosphere in the middle of the Proterozoic eon. We report what are, to our knowledge, the most-negative ∆17O values (down to -0.88‰) observed in sulfates, except for those from the terminal Cryogenian period2. This observation demonstrates that the mid-Proterozoic atmosphere was distinct from what persisted over approximately the past 0.5 billion years, directly reflecting a unique interplay among the atmospheric partial pressures of CO2 and O2 and the photosynthetic O2 flux at this time3. Oxygenic gross primary productivity is stoichiometrically related to the photosynthetic O2 flux to the atmosphere. Under current estimates of mid-Proterozoic atmospheric partial pressure of CO2 (2-30 times that of pre-anthropogenic levels), our modelling indicates that gross primary productivity was between about 6% and 41% of pre-anthropogenic levels if atmospheric O2 was between 0.1-1% or 1-10% of pre-anthropogenic levels, respectively. When compared to estimates of Archaean4-6 and Phanerozoic primary production7, these model solutions show that an increasingly more productive biosphere accompanied the broad secular pattern of increasing atmospheric O2 over geologic time8.


Asunto(s)
Ecosistema , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Oxígeno/análisis , Oxígeno/metabolismo , Azufre/análisis , Azufre/metabolismo , Atmósfera/química , Dióxido de Carbono/análisis , Historia Antigua , Ontario , Isótopos de Oxígeno/análisis , Isótopos de Oxígeno/metabolismo , Presión Parcial , Fotosíntesis , Probabilidad , Sulfatos/análisis , Sulfatos/metabolismo , Sulfuros/análisis , Sulfuros/metabolismo , Isótopos de Azufre/análisis , Isótopos de Azufre/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(51): 25478-25483, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31792178

RESUMEN

The Earth's most severe ice ages interrupted a crucial interval in eukaryotic evolution with widespread ice coverage during the Cryogenian Period (720 to 635 Ma). Aerobic eukaryotes must have survived the "Snowball Earth" glaciations, requiring the persistence of oxygenated marine habitats, yet evidence for these environments is lacking. We examine iron formations within globally distributed Cryogenian glacial successions to reconstruct the redox state of the synglacial oceans. Iron isotope ratios and cerium anomalies from a range of glaciomarine environments reveal pervasive anoxia in the ice-covered oceans but increasing oxidation with proximity to the ice shelf grounding line. We propose that the outwash of subglacial meltwater supplied oxygen to the synglacial oceans, creating glaciomarine oxygen oases. The confluence of oxygen-rich meltwater and iron-rich seawater may have provided sufficient energy to sustain chemosynthetic communities. These processes could have supplied the requisite oxygen and organic carbon source for the survival of early animals and other eukaryotic heterotrophs through these extreme glaciations.

4.
Nature ; 523(7561): 451-4, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-26201598

RESUMEN

Sedimentary rocks deposited across the Proterozoic-Phanerozoic transition record extreme climate fluctuations, a potential rise in atmospheric oxygen or re-organization of the seafloor redox landscape, and the initial diversification of animals. It is widely assumed that the inferred redox change facilitated the observed trends in biodiversity. Establishing this palaeoenvironmental context, however, requires that changes in marine redox structure be tracked by means of geochemical proxies and translated into estimates of atmospheric oxygen. Iron-based proxies are among the most effective tools for tracking the redox chemistry of ancient oceans. These proxies are inherently local, but have global implications when analysed collectively and statistically. Here we analyse about 4,700 iron-speciation measurements from shales 2,300 to 360 million years old. Our statistical analyses suggest that subsurface water masses in mid-Proterozoic oceans were predominantly anoxic and ferruginous (depleted in dissolved oxygen and iron-bearing), but with a tendency towards euxinia (sulfide-bearing) that is not observed in the Neoproterozoic era. Analyses further indicate that early animals did not experience appreciable benthic sulfide stress. Finally, unlike proxies based on redox-sensitive trace-metal abundances, iron geochemical data do not show a statistically significant change in oxygen content through the Ediacaran and Cambrian periods, sharply constraining the magnitude of the end-Proterozoic oxygen increase. Indeed, this re-analysis of trace-metal data is consistent with oxygenation continuing well into the Palaeozoic era. Therefore, if changing redox conditions facilitated animal diversification, it did so through a limited rise in oxygen past critical functional and ecological thresholds, as is seen in modern oxygen minimum zone benthic animal communities.


Asunto(s)
Hierro/análisis , Hierro/química , Oxígeno/análisis , Oxígeno/química , Animales , Atmósfera/química , Biodiversidad , Sedimentos Geológicos/química , Historia Antigua , Océanos y Mares , Oxidación-Reducción , Oxígeno/metabolismo , Agua de Mar/química , Sulfuros/metabolismo , Factores de Tiempo
5.
Geobiology ; 22(3): e12598, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38700417

RESUMEN

Tonian (ca. 1000-720 Ma) marine environments are hypothesised to have experienced major redox changes coinciding with the evolution and diversification of multicellular eukaryotes. In particular, the earliest Tonian stratigraphic record features the colonisation of benthic habitats by multicellular macroscopic algae, which would have been powerful ecosystem engineers that contributed to the oxygenation of the oceans and the reorganisation of biogeochemical cycles. However, the paleoredox context of this expansion of macroalgal habitats in Tonian nearshore marine environments remains uncertain due to limited well-preserved fossils and stratigraphy. As such, the interdependent relationship between early complex life and ocean redox state is unclear. An assemblage of macrofossils including the chlorophyte macroalga Archaeochaeta guncho was recently discovered in the lower Mackenzie Mountains Supergroup in Yukon (Canada), which archives marine sedimentation from ca. 950-775 Ma, permitting investigation into environmental evolution coincident with eukaryotic ecosystem evolution and expansion. Here we present multi-proxy geochemical data from the lower Mackenzie Mountains Supergroup to constrain the paleoredox environment within which these large benthic macroalgae thrived. Two transects show evidence for basin-wide anoxic (ferruginous) oceanic conditions (i.e., high FeHR/FeT, low Fepy/FeHR), with muted redox-sensitive trace metal enrichments and possible seasonal variability. However, the weathering of sulfide minerals in the studied samples may obscure geochemical signatures of euxinic conditions. These results suggest that macroalgae colonized shallow environments in an ocean that remained dominantly anoxic with limited evidence for oxygenation until ca. 850 Ma. Collectively, these geochemical results provide novel insights into the environmental conditions surrounding the evolution and expansion of benthic macroalgae and the eventual dominance of oxygenated oceanic conditions required for the later emergence of animals.


Asunto(s)
Evolución Biológica , Fósiles , Oxidación-Reducción , Sedimentos Geológicos/química , Sedimentos Geológicos/análisis , Eucariontes , Canadá , Ecosistema , Chlorophyta
6.
Sci Rep ; 12(1): 6222, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35418588

RESUMEN

The rise of eukaryotic macroalgae in the late Mesoproterozoic to early Neoproterozoic was a critical development in Earth's history that triggered dramatic changes in biogeochemical cycles and benthic habitats, ultimately resulting in ecosystems habitable to animals. However, evidence of the diversification and expansion of macroalgae is limited by a biased fossil record. Non-mineralizing organisms are rarely preserved, occurring only in exceptional environments that favor fossilization. Investigating the taphonomy of well-preserved macroalgae will aid in identifying these target environments, allowing ecological trends to be disentangled from taphonomic overprints. Here we describe the taphonomy of macroalgal fossils from the Tonian Dolores Creek Formation (ca. 950 Ma) of northwestern Canada (Yukon Territory) that preserves cm-scale macroalgae. Analytical microscopy, including scanning electron microscopy and tomographic x-ray microscopy, was used to investigate fossil preservation, which was the result of a combination of pyritization and aluminosilicification, similar to accessory mineralization observed in Paleozoic Burgess Shale-type fossils. These new Neoproterozoic fossils help to bridge a gap in the fossil record of early algae, offer a link between the fossil and molecular record, and provide new insights into evolution during the Tonian Period, when many eukaryotic lineages are predicted to have diversified.


Asunto(s)
Ecosistema , Fósiles , Animales , Evolución Biológica , Eucariontes , Dolor , Preservación Biológica , El Yukón
7.
Emerg Top Life Sci ; 2(2): 137-147, 2018 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32412613

RESUMEN

The Tonian and Cryogenian periods (ca. 1000-635.5 Ma) witnessed important biological and climatic events, including diversification of eukaryotes, the rise of algae as primary producers, the origin of Metazoa, and a pair of Snowball Earth glaciations. The Tonian and Cryogenian will also be the next periods in the geological time scale to be formally defined. Time-calibrating this interval is essential for properly ordering and interpreting these events and establishing and testing hypotheses for paleoenvironmental change. Here, we briefly review the methods by which the Proterozoic time scale is dated and provide an up-to-date compilation of age constraints on key fossil first and last appearances, geological events, and horizons during the Tonian and Cryogenian periods. We also develop a new age model for a ca. 819-740 Ma composite section in Svalbard, which is unusually complete and contains a rich Tonian fossil archive. This model provides useful preliminary age estimates for the Tonian succession in Svalbard and distinct carbon isotope anomalies that can be globally correlated and used as an indirect dating tool.

8.
Sci Adv ; 3(11): e1600983, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29134193

RESUMEN

Geological evidence indicates that grounded ice sheets reached sea level at all latitudes during two long-lived Cryogenian (58 and ≥5 My) glaciations. Combined uranium-lead and rhenium-osmium dating suggests that the older (Sturtian) glacial onset and both terminations were globally synchronous. Geochemical data imply that CO2 was 102 PAL (present atmospheric level) at the younger termination, consistent with a global ice cover. Sturtian glaciation followed breakup of a tropical supercontinent, and its onset coincided with the equatorial emplacement of a large igneous province. Modeling shows that the small thermal inertia of a globally frozen surface reverses the annual mean tropical atmospheric circulation, producing an equatorial desert and net snow and frost accumulation elsewhere. Oceanic ice thickens, forming a sea glacier that flows gravitationally toward the equator, sustained by the hydrologic cycle and by basal freezing and melting. Tropical ice sheets flow faster as CO2 rises but lose mass and become sensitive to orbital changes. Equatorial dust accumulation engenders supraglacial oligotrophic meltwater ecosystems, favorable for cyanobacteria and certain eukaryotes. Meltwater flushing through cracks enables organic burial and submarine deposition of airborne volcanic ash. The subglacial ocean is turbulent and well mixed, in response to geothermal heating and heat loss through the ice cover, increasing with latitude. Terminal carbonate deposits, unique to Cryogenian glaciations, are products of intense weathering and ocean stratification. Whole-ocean warming and collapsing peripheral bulges allow marine coastal flooding to continue long after ice-sheet disappearance. The evolutionary legacy of Snowball Earth is perceptible in fossils and living organisms.


Asunto(s)
Clima , Animales , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Planeta Tierra , Cubierta de Hielo/química , Datación Radiométrica
10.
Science ; 328(5978): 608-11, 2010 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-20431011

RESUMEN

Global carbon cycle perturbations throughout Earth history are frequently linked to changing paleogeography, glaciation, ocean oxygenation, and biological innovation. A pronounced carbonate carbon-isotope excursion during the Ediacaran Period (635 to 542 million years ago), accompanied by invariant or decoupled organic carbon-isotope values, has been explained with a model that relies on a large oceanic reservoir of organic carbon. We present carbonate and organic matter carbon-isotope data that demonstrate no decoupling from approximately 820 to 760 million years ago and complete decoupling between the Sturtian and Marinoan glacial events of the Cryogenian Period (approximately 720 to 635 million years ago). Growth of the organic carbon pool may be related to iron-rich and sulfate-poor deep-ocean conditions facilitated by an increase in the Fe:S ratio of the riverine flux after Sturtian glacial removal of a long-lived continental regolith.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA