Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
FASEB J ; 38(1): e23379, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38133921

RESUMEN

Dynamin-related protein 1 (Drp1) is a cytosolic GTPase protein that when activated translocates to the mitochondria, meditating mitochondrial fission and increasing reactive oxygen species (ROS) in cardiomyocytes. Drp1 has shown promise as a therapeutic target for reducing cardiac ischemia/reperfusion (IR) injury; however, the lack of specificity of some small molecule Drp1 inhibitors and the reliance on the use of Drp1 haploinsufficient hearts from older mice have left the role of Drp1 in IR in question. Here, we address these concerns using two approaches, using: (a) short-term (3 weeks), conditional, cardiomyocyte-specific, Drp1 knockout (KO) and (b) a novel, highly specific Drp1 GTPase inhibitor, Drpitor1a. Short-term Drp1 KO mice exhibited preserved exercise capacity and cardiac contractility, and their isolated cardiac mitochondria demonstrated increased mitochondrial complex 1 activity, respiratory coupling, and calcium retention capacity compared to controls. When exposed to IR injury in a Langendorff perfusion system, Drp1 KO hearts had preserved contractility, decreased reactive oxygen species (ROS), enhanced mitochondrial calcium capacity, and increased resistance to mitochondrial permeability transition pore (MPTP) opening. Pharmacological inhibition of Drp1 with Drpitor1a following ischemia, but before reperfusion, was as protective as Drp1 KO for cardiac function and mitochondrial calcium homeostasis. In contrast to the benefits of short-term Drp1 inhibition, prolonged Drp1 ablation (6 weeks) resulted in cardiomyopathy. Drp1 KO hearts were also associated with decreased ryanodine receptor 2 (RyR2) protein expression and pharmacological inhibition of the RyR2 receptor decreased ROS in post-IR hearts suggesting that changes in RyR2 may have a role in Drp1 KO mediated cardioprotection. We conclude that Drp1-mediated increases in myocardial ROS production and impairment of mitochondrial calcium handling are key mechanisms of IR injury. Short-term inhibition of Drp1 is a promising strategy to limit early myocardial IR injury which is relevant for the therapy of acute myocardial infarction, cardiac arrest, and heart transplantation.


Asunto(s)
Dinaminas , Infarto del Miocardio , Daño por Reperfusión Miocárdica , Animales , Ratones , Calcio/metabolismo , Dinaminas/metabolismo , Homeostasis , Mitocondrias Cardíacas/metabolismo , Dinámicas Mitocondriales , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
2.
Amino Acids ; 53(12): 1851-1862, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33963932

RESUMEN

Fibrosis is a pathologic condition resulting from aberrant wound healing responses that lead to excessive accumulation of extracellular matrix components, distortion of organ architecture, and loss of organ function. Fibrotic disease can affect every organ system; moreover, fibrosis is an important microenvironmental component of many cancers, including pancreatic, cervical, and hepatocellular cancers. Fibrosis is also an independent risk factor for cancer. Taken together, organ fibrosis contributes to up to 45% of all deaths worldwide. There are no approved therapies that halt or reverse fibrotic disease, highlighting the great need for novel therapeutic targets. At the heart of almost all fibrotic disease is the TGF-ß-mediated differentiation of fibroblasts into myofibroblasts, the primary cell type responsible for the production of collagen and other matrix proteins and distortion of tissue architecture. Recent advances, particularly in the field of lung fibrosis, have highlighted the role that metabolic reprogramming plays in the pathogenic phenotype of myofibroblasts, particularly the induction of de novo amino acid synthesis pathways that are required to support collagen matrix production by these cells. In this review, we will discuss the metabolic changes associated with myofibroblast differentiation, focusing on the de novo production of glycine and proline, two amino acids which compose over half of the primary structure of collagen protein. We will also discuss the important role that synthesis of these amino acids plays in regulating cellular redox balance and epigenetic state.


Asunto(s)
Aminoácidos/metabolismo , Colágeno/metabolismo , Fibrosis/metabolismo , Miofibroblastos/metabolismo , Neoplasias/metabolismo , Animales , Diferenciación Celular/fisiología , Humanos
3.
Am J Respir Cell Mol Biol ; 62(2): 243-255, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31469581

RESUMEN

Macrophage effector function is dynamic in nature and largely dependent on not only the type of immunological challenge but also the tissue-specific environment and developmental origin of a given macrophage population. Recent research has highlighted the importance of glycolytic metabolism in the regulation of effector function as a common feature associated with macrophage activation. Yet, most research has used macrophage cell lines and bone marrow-derived macrophages, which do not account for the diversity of macrophage populations and the role of tissue specificity in macrophage immunometabolism. Tissue-resident alveolar macrophages (TR-AMs) reside in an environment characterized by remarkably low glucose concentrations, making glycolysis-linked immunometabolism an inefficient and unlikely means of immune activation. In this study, we show that TR-AMs rely on oxidative phosphorylation to meet their energy demands and maintain extremely low levels of glycolysis under steady-state conditions. Unlike bone marrow-derived macrophages, TR-AMs did not experience enhanced glycolysis in response to LPS, and glycolytic inhibition had no effect on their proinflammatory cytokine production. Hypoxia-inducible factor 1α stabilization promoted glycolysis in TR-AMs and shifted energy production away from oxidative metabolism at baseline, but it was not sufficient for TR-AMs to mount further increases in glycolysis or enhance immune function in response to LPS. Importantly, we confirmed these findings in an in vivo influenza model in which infiltrating macrophages had significantly higher glycolytic and proinflammatory gene expression than TR-AMs. These findings demonstrate that glycolysis is dispensable for macrophage effector function in TR-AM and highlight the importance of macrophage tissue origin (tissue resident vs. recruited) in immunometabolism.


Asunto(s)
Glucólisis/efectos de los fármacos , Inflamación/metabolismo , Activación de Macrófagos/inmunología , Macrófagos Alveolares/efectos de los fármacos , Animales , Inflamación/genética , Lipopolisacáridos/farmacología , Macrófagos Alveolares/metabolismo , Fosforilación Oxidativa/efectos de los fármacos
4.
Am J Respir Cell Mol Biol ; 63(5): 601-612, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32668192

RESUMEN

Idiopathic pulmonary fibrosis is a fatal interstitial lung disease characterized by the TGF-ß (transforming growth factor-ß)-dependent differentiation of lung fibroblasts into myofibroblasts, which leads to excessive deposition of collagen proteins and progressive scarring. We have previously shown that synthesis of collagen by myofibroblasts requires de novo synthesis of glycine, the most abundant amino acid found in collagen protein. TGF-ß upregulates the expression of the enzymes of the de novo serine-glycine synthesis pathway in lung fibroblasts; however, the transcriptional and signaling regulators of this pathway remain incompletely understood. Here, we demonstrate that TGF-ß promotes accumulation of ATF4 (activating transcription factor 4), which is required for increased expression of the serine-glycine synthesis pathway enzymes in response to TGF-ß. We found that induction of the integrated stress response (ISR) contributes to TGF-ß-induced ATF4 activity; however, the primary driver of ATF4 downstream of TGF-ß is activation of mTORC1 (mTOR Complex 1). TGF-ß activates the PI3K-Akt-mTOR pathway, and inhibition of PI3K prevents activation of downstream signaling and induction of ATF4. Using a panel of mTOR inhibitors, we found that ATF4 activation is dependent on mTORC1, independent of mTORC2. Rapamycin, which incompletely and allosterically inhibits mTORC1, had no effect on TGF-ß-mediated induction of ATF4; however, Rapalink-1, which specifically targets the kinase domain of mTORC1, completely inhibited ATF4 induction and metabolic reprogramming downstream of TGF-ß. Our results provide insight into the mechanisms of metabolic reprogramming in myofibroblasts and clarify contradictory published findings on the role of mTOR inhibition in myofibroblast differentiation.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Fibroblastos/metabolismo , Pulmón/citología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Colágeno/biosíntesis , Fibroblastos/efectos de los fármacos , Glicina/metabolismo , Glucólisis/efectos de los fármacos , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina/metabolismo , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico , Serina-Treonina Quinasas TOR/metabolismo
5.
Crit Care Med ; 48(2): e133-e140, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31939812

RESUMEN

OBJECTIVES: Cardiogenic shock following cardiopulmonary resuscitation for sudden cardiac arrest is common, occurring even in the absence of acute coronary artery occlusion, and contributes to high rates of postcardiopulmonary resuscitation mortality. The pathophysiology of this shock is unclear, and effective therapies for improving clinical outcomes are lacking. DESIGN: Laboratory investigation. SETTING: University laboratory. SUBJECTS: C57BL/6 adult female mice. INTERVENTIONS: Anesthetized and ventilated adult female C57BL/6 wild-type mice underwent a 4, 8, 12, or 16-minute potassium chloride-induced cardiac arrest followed by 90 seconds of cardiopulmonary resuscitation. Mice were then blindly randomized to a single IV injection of vehicle (phosphate-buffered saline) or suppressor of site IQ electron leak, an inhibitor of superoxide production by complex I of the mitochondrial electron transport chain. Suppressor of site IQ electron leak and vehicle were administered during cardiopulmonary resuscitation. MEASUREMENTS AND MAIN RESULTS: Using a murine model of asystolic cardiac arrest, we discovered that duration of cardiac arrest prior to cardiopulmonary resuscitation determined postresuscitation success rates, degree of neurologic injury, and severity of myocardial dysfunction. Post-cardiopulmonary resuscitation cardiac dysfunction was not associated with myocardial necrosis, apoptosis, inflammation, or mitochondrial permeability transition pore opening. Furthermore, left ventricular function recovered within 72 hours of cardiopulmonary resuscitation, indicative of myocardial stunning. Postcardiopulmonary resuscitation, the myocardium exhibited increased reactive oxygen species and evidence of mitochondrial injury, specifically reperfusion-induced reactive oxygen species generation at electron transport chain complex I. Suppressor of site IQ electron leak, which inhibits complex I-dependent reactive oxygen species generation by suppression of site IQ electron leak, decreased myocardial reactive oxygen species generation and improved postcardiopulmonary resuscitation myocardial function, neurologic outcomes, and survival. CONCLUSIONS: The severity of cardiogenic shock following asystolic cardiac arrest is dependent on the length of cardiac arrest prior to cardiopulmonary resuscitation and is mediated by myocardial stunning resulting from mitochondrial electron transport chain complex I dysfunction. A novel pharmacologic agent targeting this mechanism, suppressor of site IQ electron leak, represents a potential, practical therapy for improving sudden cardiac arrest resuscitation outcomes.


Asunto(s)
Complejo I de Transporte de Electrón/antagonistas & inhibidores , Paro Cardíaco/terapia , Peróxido de Hidrógeno/antagonistas & inhibidores , Mitocondrias/efectos de los fármacos , Aturdimiento Miocárdico/prevención & control , Superóxidos/antagonistas & inhibidores , Animales , Reanimación Cardiopulmonar , Femenino , Paro Cardíaco/fisiopatología , Ratones , Ratones Endogámicos C57BL , Aturdimiento Miocárdico/fisiopatología , Distribución Aleatoria , Especies Reactivas de Oxígeno/metabolismo
6.
Am J Respir Crit Care Med ; 199(12): 1517-1536, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30554520

RESUMEN

Rationale: The contributions of diverse cell populations in the human lung to pulmonary fibrosis pathogenesis are poorly understood. Single-cell RNA sequencing can reveal changes within individual cell populations during pulmonary fibrosis that are important for disease pathogenesis. Objectives: To determine whether single-cell RNA sequencing can reveal disease-related heterogeneity within alveolar macrophages, epithelial cells, or other cell types in lung tissue from subjects with pulmonary fibrosis compared with control subjects. Methods: We performed single-cell RNA sequencing on lung tissue obtained from eight transplant donors and eight recipients with pulmonary fibrosis and on one bronchoscopic cryobiospy sample from a patient with idiopathic pulmonary fibrosis. We validated these data using in situ RNA hybridization, immunohistochemistry, and bulk RNA-sequencing on flow-sorted cells from 22 additional subjects. Measurements and Main Results: We identified a distinct, novel population of profibrotic alveolar macrophages exclusively in patients with fibrosis. Within epithelial cells, the expression of genes involved in Wnt secretion and response was restricted to nonoverlapping cells. We identified rare cell populations including airway stem cells and senescent cells emerging during pulmonary fibrosis. We developed a web-based tool to explore these data. Conclusions: We generated a single-cell atlas of pulmonary fibrosis. Using this atlas, we demonstrated heterogeneity within alveolar macrophages and epithelial cells from subjects with pulmonary fibrosis. These results support the feasibility of discovery-based approaches using next-generation sequencing technologies to identify signaling pathways for targeting in the development of personalized therapies for patients with pulmonary fibrosis.


Asunto(s)
Células Cultivadas/patología , Células Epiteliales/patología , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , Análisis de Secuencia de ARN , Células Madre/patología , Transcriptoma , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino
8.
Am J Respir Cell Mol Biol ; 61(5): 597-606, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30973753

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is characterized by the transforming growth factor (TGF)-ß-dependent differentiation of lung fibroblasts into myofibroblasts, leading to excessive deposition of extracellular matrix proteins, which distort lung architecture and function. Metabolic reprogramming in myofibroblasts is emerging as an important mechanism in the pathogenesis of IPF, and recent evidence suggests that glutamine metabolism is required in myofibroblasts, although the exact role of glutamine in myofibroblasts is unclear. In the present study, we demonstrate that glutamine and its conversion to glutamate by glutaminase are required for TGF-ß-induced collagen protein production in lung fibroblasts. We found that metabolism of glutamate to α-ketoglutarate by glutamate dehydrogenase or the glutamate-pyruvate or glutamate-oxaloacetate transaminases is not required for collagen protein production. Instead, we discovered that the glutamate-consuming enzymes phosphoserine aminotransferase 1 (PSAT1) and aldehyde dehydrogenase 18A1 (ALDH18A1)/Δ1-pyrroline-5-carboxylate synthetase (P5CS) are required for collagen protein production by lung fibroblasts. PSAT1 is required for de novo glycine production, whereas ALDH18A1/P5CS is required for de novo proline production. Consistent with this, we found that TGF-ß treatment increased cellular concentrations of glycine and proline in lung fibroblasts. Our results suggest that glutamine metabolism is required to promote amino acid biosynthesis and not to provide intermediates such as α-ketoglutarate for oxidation in mitochondria. In support of this, we found that inhibition of glutaminolysis has no effect on cellular oxygen consumption and that knockdown of oxoglutarate dehydrogenase has no effect on the ability of fibroblasts to produce collagen protein. Our results suggest that amino acid biosynthesis pathways may represent novel therapeutic targets for treatment of fibrotic diseases, including IPF.


Asunto(s)
Colágeno/metabolismo , Fibroblastos/metabolismo , Glutaminasa/metabolismo , Glutamina/metabolismo , Diferenciación Celular , Células Cultivadas , Humanos , Pulmón/patología , Miofibroblastos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
9.
Genes Dev ; 25(24): 2579-93, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22155925

RESUMEN

Nuclear lamin B1 (LB1) is a major structural component of the nucleus that appears to be involved in the regulation of many nuclear functions. The results of this study demonstrate that LB1 expression in WI-38 cells decreases during cellular senescence. Premature senescence induced by oncogenic Ras also decreases LB1 expression through a retinoblastoma protein (pRb)-dependent mechanism. Silencing the expression of LB1 slows cell proliferation and induces premature senescence in WI-38 cells. The effects of LB1 silencing on proliferation require the activation of p53, but not pRb. However, the induction of premature senescence requires both p53 and pRb. The proliferation defects induced by silencing LB1 are accompanied by a p53-dependent reduction in mitochondrial reactive oxygen species (ROS), which can be rescued by growth under hypoxic conditions. In contrast to the effects of LB1 silencing, overexpression of LB1 increases the proliferation rate and delays the onset of senescence of WI-38 cells. This overexpression eventually leads to cell cycle arrest at the G1/S boundary. These results demonstrate the importance of LB1 in regulating the proliferation and senescence of human diploid cells through a ROS signaling pathway.


Asunto(s)
Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Ciclo Celular/genética , Línea Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proliferación Celular , Senescencia Celular/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Silenciador del Gen , Humanos , Especies Reactivas de Oxígeno/metabolismo , Proteína de Retinoblastoma/metabolismo , Transducción de Señal , Telómero/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas ras/metabolismo
10.
Am J Respir Cell Mol Biol ; 58(5): 585-593, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29019702

RESUMEN

Organ fibrosis, including idiopathic pulmonary fibrosis, is associated with significant morbidity and mortality. Because currently available therapies have limited effect, there is a need to better understand the mechanisms by which organ fibrosis occurs. We have recently reported that transforming growth factor (TGF)-ß, a key cytokine that promotes fibrogenesis, induces the expression of the enzymes of the de novo serine and glycine synthesis pathway in human lung fibroblasts, and that phosphoglycerate dehydrogenase (PHGDH; the first and rate-limiting enzyme of the pathway) is required to promote collagen protein synthesis downstream of TGF-ß. In this study, we investigated whether inhibition of de novo serine and glycine synthesis attenuates lung fibrosis in vivo. We found that TGF-ß induces mRNA and protein expression of PHGDH in murine fibroblasts. Similarly, intratracheal administration of bleomycin resulted in increased expression of PHGDH in mouse lungs, localized to fibrotic regions. Using a newly developed small molecule inhibitor of PHGDH (NCT-503), we tested whether pharmacologic inhibition of PHGDH could inhibit fibrogenesis both in vitro and in vivo. Treatment of murine and human lung fibroblasts with NCT-503 decreased TGF-ß-induced collagen protein synthesis. Mice treated with the PHGDH inhibitor beginning 7 days after intratracheal instillation of bleomycin had attenuation of lung fibrosis. These results indicate that the de novo serine and glycine synthesis pathway is necessary for TGF-ß-induced collagen synthesis and bleomycin-induced pulmonary fibrosis. PHGDH and other enzymes in the de novo serine and glycine synthesis pathway may be a therapeutic target for treatment of fibrotic diseases, including idiopathic pulmonary fibrosis.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Bleomicina , Inhibidores Enzimáticos/farmacología , Fibroblastos/efectos de los fármacos , Fibrosis Pulmonar Idiopática/prevención & control , Pulmón/efectos de los fármacos , Fosfoglicerato-Deshidrogenasa/antagonistas & inhibidores , Animales , Colágeno/metabolismo , Modelos Animales de Enfermedad , Fibroblastos/enzimología , Fibroblastos/patología , Glicina/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/enzimología , Fibrosis Pulmonar Idiopática/patología , Pulmón/enzimología , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Fosfoglicerato-Deshidrogenasa/metabolismo , Serina/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/farmacología
11.
Am J Respir Crit Care Med ; 195(5): 639-651, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27855271

RESUMEN

RATIONALE: Acute respiratory distress syndrome (ARDS) is caused by widespread endothelial barrier disruption and uncontrolled cytokine storm. Genome-wide association studies (GWAS) have linked multiple genes to ARDS. Although mechanosensitive transcription factor Krüppel-like factor 2 (KLF2) is a major regulator of endothelial function, its role in regulating pulmonary vascular integrity in lung injury and ARDS-associated GWAS genes remains poorly understood. OBJECTIVES: To examine KLF2 expression in multiple animal models of acute lung injury and further elucidate the KLF2-mediated pathways involved in endothelial barrier disruption and cytokine storm in experimental lung injury. METHODS: Animal and in vitro models of acute lung injury were used to characterize KLF2 expression and its downstream effects responding to influenza A virus (A/WSN/33 [H1N1]), tumor necrosis factor-α, LPS, mechanical stretch/ventilation, or microvascular flow. KLF2 manipulation, permeability measurements, small GTPase activity, luciferase assays, chromatin immunoprecipitation assays, and network analyses were used to determine the mechanistic roles of KLF2 in regulating endothelial monolayer integrity, ARDS-associated GWAS genes, and lung pathophysiology. MEASUREMENTS AND MAIN RESULTS: KLF2 is significantly reduced in several animal models of acute lung injury. Microvascular endothelial KLF2 is significantly induced by capillary flow but reduced by pathologic cyclic stretch and inflammatory stimuli. KLF2 is a novel activator of small GTPase Ras-related C3 botulinum toxin substrate 1 by transcriptionally controlling Rap guanine nucleotide exchange factor 3/exchange factor directly activated by cyclic adenosine monophosphate, which maintains vascular integrity. KLF2 regulates multiple ARDS GWAS genes related to cytokine storm, oxidation, and coagulation in lung microvascular endothelium. KLF2 overexpression ameliorates LPS-induced lung injury in mice. CONCLUSIONS: Disruption of endothelial KLF2 results in dysregulation of lung microvascular homeostasis and contributes to lung pathology in ARDS.


Asunto(s)
Permeabilidad Capilar/fisiología , Endotelio Vascular/metabolismo , GTP Fosfohidrolasas/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Síndrome de Dificultad Respiratoria/metabolismo , Transducción de Señal/fisiología , Animales , Modelos Animales de Enfermedad , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuropéptidos/metabolismo , Ratas , Ratas Sprague-Dawley , Proteína de Unión al GTP rac1/metabolismo
13.
J Biol Chem ; 291(53): 27239-27251, 2016 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-27836973

RESUMEN

TGF-ß promotes excessive collagen deposition in fibrotic diseases such as idiopathic pulmonary fibrosis (IPF). The amino acid composition of collagen is unique due to its high (33%) glycine content. Here, we report that TGF-ß induces expression of glycolytic genes and increases glycolytic flux. TGF-ß also induces the expression of the enzymes of the de novo serine synthesis pathway (phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase 1 (PSAT1), and phosphoserine phosphatase (PSPH)) and de novo glycine synthesis (serine hydroxymethyltransferase 2 (SHMT2)). Studies in fibroblasts with genetic attenuation of PHGDH or SHMT2 and pharmacologic inhibition of PHGDH showed that these enzymes are required for collagen synthesis. Furthermore, metabolic labeling experiments demonstrated carbon from glucose incorporated into collagen. Lungs from humans with IPF demonstrated increased expression of PHGDH and SHMT2. These results indicate that the de novo serine synthesis pathway is necessary for TGF-ß-induced collagen production and suggest that this pathway may be a therapeutic target for treatment of fibrotic diseases including IPF.


Asunto(s)
Colágeno/metabolismo , Fibroblastos/metabolismo , Glicina Hidroximetiltransferasa/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Fosfoglicerato-Deshidrogenasa/metabolismo , Serina/biosíntesis , Factor de Crecimiento Transformador beta/farmacología , Células Cultivadas , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Glicina Hidroximetiltransferasa/genética , Glucólisis , Humanos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/patología , Pulmón/citología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Fosfoglicerato-Deshidrogenasa/genética
14.
Am J Physiol Lung Cell Mol Physiol ; 310(9): L815-23, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26851261

RESUMEN

Myofibroblast differentiation is a key process in pathogenesis of fibrotic diseases. Cardiac glycosides (ouabain, digoxin) inhibit Na(+)-K(+)-ATPase, resulting in increased intracellular [Na(+)]-to-[K(+)] ratio in cells. Microarray analysis suggested that increased intracellular [Na(+)]/[K(+)] ratio may promote the expression of cyclooxygenase-2 (COX-2), a critical enzyme in the synthesis of prostaglandins. Given antifibrotic effects of prostaglandins through activation of protein kinase A (PKA), we examined if cardiac glycosides stimulate COX-2 expression in human lung fibroblasts and how they affect myofibroblast differentiation. Ouabain stimulated a profound COX-2 expression and a sustained PKA activation, which was blocked by COX-2 inhibitor or by COX-2 knockdown. Ouabain-induced COX-2 expression and PKA activation were abolished by the inhibitor of the Na(+)/Ca(2+) exchanger, KB-R4943. Ouabain inhibited transforming growth factor-ß (TGF-ß)-induced Rho activation, stress fiber formation, serum response factor activation, and the expression of smooth muscle α-actin, collagen-1, and fibronectin. These effects were recapitulated by an increase in intracellular [Na(+)]/[K(+)] ratio through the treatment of cells with K(+)-free medium or with digoxin. Although inhibition of COX-2 or of the Na(+)/Ca(2+) exchanger blocked ouabain-induced PKA activation, this failed to reverse the inhibition of TGF-ß-induced Rho activation or myofibroblast differentiation by ouabain. Together, these data demonstrate that ouabain, through the increase in intracellular [Na(+)]/[K(+)] ratio, drives the induction of COX-2 expression and PKA activation, which is accompanied by a decreased Rho activation and myofibroblast differentiation in response to TGF-ß. However, COX-2 expression and PKA activation are not sufficient for inhibition of the fibrotic effects of TGF-ß by ouabain, suggesting that additional mechanisms must exist.


Asunto(s)
Glicósidos Cardíacos/farmacología , Diferenciación Celular , Digoxina/farmacología , Miofibroblastos/fisiología , Ouabaína/farmacología , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Activación Enzimática , Expresión Génica , Humanos , Fibrosis Pulmonar Idiopática/patología , Pulmón/patología , Miofibroblastos/efectos de los fármacos
16.
Proc Natl Acad Sci U S A ; 109(35): 14030-4, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22891326

RESUMEN

Notch plays a critical role in the transition from proliferation to differentiation in the epidermis and corneal epithelium. Furthermore, aberrant Notch signaling is a feature of diseases like psoriasis, eczema, nonmelanoma skin cancer, and melanoma where differentiation and proliferation are impaired. Whereas much is known about the downstream events following Notch signaling, factors responsible for negatively regulating Notch receptor signaling after ligand activation are incompletely understood. Notch can undergo hydroxylation by factor-inhibiting hypoxia-inducible factor 1 (FIH-1); however, the biological significance of this phenomenon is unclear. Here we show that FIH-1 expression is up-regulated in diseased epidermis and corneal epithelium. Elevating FIH-1 levels in primary human epidermal keratinocytes (HEKs) and human corneal epithelial keratinocytes (HCEKs) impairs differentiation in submerged cultures and in a "three-dimensional" organotypic raft model of human epidermis, in part, via a coordinate decrease in Notch signaling. Knockdown of FIH-1 enhances keratinocyte differentiation. Loss of FIH-1 in vivo increased Notch activity in the limbal epithelium, resulting in a more differentiated phenotype. microRNA-31 (miR-31) is an endogenous negative regulator of FIH-1 expression that results in keratinocyte differentiation, mediated by Notch activation. Ectopically expressing miR-31 in an undifferentiated corneal epithelial cell line promotes differentiation and recapitulates a corneal epithelium in a three-dimensional raft culture model. Our results define a previously unknown mechanism for keratinocyte fate decisions where Notch signaling potential is, in part, controlled through a miR-31/FIH-1 nexus.


Asunto(s)
Queratinocitos/citología , Queratinocitos/fisiología , MicroARNs/metabolismo , Oxigenasas de Función Mixta/metabolismo , Psoriasis/metabolismo , Proteínas Represoras/metabolismo , Animales , Diferenciación Celular/fisiología , Línea Celular Transformada , Células Epidérmicas , Epidermis/fisiología , Células Epiteliales/citología , Células Epiteliales/fisiología , Epitelio Corneal/citología , Epitelio Corneal/fisiología , Femenino , Humanos , Ratones , Ratones Transgénicos , Oxigenasas de Función Mixta/genética , Técnicas de Cultivo de Órganos , Fenotipo , Psoriasis/genética , Psoriasis/patología , Receptores Notch/metabolismo , Proteínas Represoras/genética , Transducción de Señal/fisiología
17.
Trends Biochem Sci ; 35(9): 505-13, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20430626

RESUMEN

Reactive oxygen species (ROS) have historically been viewed as toxic metabolic byproducts and causal agents in a myriad of human pathologies. More recent work, however, indicates that ROS are critical intermediates of cellular signaling pathways. Although it is clear that dedicated cellular ROS producers such as NADPH oxidases participate in signaling, evidence suggests that mitochondrial production of ROS is also a tightly controlled process, and plays a role in the maintenance of cellular oxidative homeostasis and propagation of cellular signaling pathways. Production of ROS at mitochondria thus integrates cellular energy state, metabolite concentrations, and other upstream signaling events and has important implications in cellular stress signaling, maintenance of stem cell populations, cellular survival, and oncogenic transformation.


Asunto(s)
Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Animales , Fenómenos Fisiológicos Celulares , Humanos
19.
bioRxiv ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38854083

RESUMEN

Myofibroblast differentiation, characterized by accumulation of cytoskeletal and extracellular matrix proteins by fibroblasts, is a key process in wound healing and pathogenesis of tissue fibrosis. Transforming growth factor-ß (TGF-ß) is the most powerful known driver of myofibroblast differentiation. TGF-ß signals through transmembrane receptor serine/threonine kinases that phosphorylate Smad transcription factors (Smad2/3) leading to activation of transcription of target genes. Heterotrimeric G proteins mediate a distinct signaling from seven-transmembrane G protein coupled receptors, not commonly linked to Smad activation. We asked if G protein signaling plays any role in TGF-ß-induced myofibroblast differentiation, using primary cultured human lung fibroblasts. Activation of Gαs by cholera toxin blocked TGF-ß-induced myofibroblast differentiation without affecting Smad2/3 phosphorylation. Inhibition of Gαi by pertussis toxin, or siRNA-mediated combined knockdown of Gαq and Gα11 had no significant effect on TGF-ß-induced myofibroblast differentiation. A combined knockdown of Gα12 and Gα13 resulted in a drastic inhibition of TGF-ß-stimulated expression of myofibroblast marker proteins (collagen-1, fibronectin, smooth-muscle α-actin), with siGα12 being significantly more potent than siGα13. Mechanistically, a combined knockdown of Gα12 and Gα13 resulted in a substantially reduced phosphorylation of Smad2 and Smad3 in response to TGF-ß, which was accompanied by a significant decrease in the expression of TGFß receptors (TGFBR1, TGFBR2) and of Smad3 under siGα12/13 conditions. In conclusion, our study uncovers a novel role of Gα12/13 proteins in the control of TGF-ß signaling and myofibroblast differentiation.

20.
bioRxiv ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38915485

RESUMEN

Idiopathic pulmonary fibrosis is a fatal disease characterized by the TGF-ß-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive replacement of healthy lung with scar tissue. We and others have shown that fibroblast activation is supported by metabolic reprogramming, including the upregulation of the de novo synthesis of glycine, the most abundant amino acid found in collagen protein. How fibroblast metabolic reprogramming is regulated downstream of TGF-ß is incompletely understood. We and others have shown that TGF-ß-mediated activation of the Mechanistic Target of Rapamycin Complex 1 (mTORC1) and downstream upregulation of Activating Transcription Factor 4 (ATF4) promote increased expression of the enzymes required for de novo glycine synthesis; however, whether mTOR and ATF4 regulate other metabolic pathways in lung fibroblasts has not been explored. Here, we used RNA sequencing to determine how both ATF4 and mTOR regulate gene expression in human lung fibroblasts following TGF-ß. We found that ATF4 primarily regulates enzymes and transporters involved in amino acid homeostasis as well as aminoacyl-tRNA synthetases. mTOR inhibition resulted not only in the loss of ATF4 target gene expression, but also in the reduced expression of glycolytic enzymes and mitochondrial electron transport chain subunits. Analysis of TGF-ß-induced changes in cellular metabolite levels confirmed that ATF4 regulates amino acid homeostasis in lung fibroblasts while mTOR also regulates glycolytic and TCA cycle metabolites. We further analyzed publicly available single cell RNAseq data sets and found increased expression of ATF4 and mTOR metabolic targets in pathologic fibroblast populations from the lungs of IPF patients. Our results provide insight into the mechanisms of metabolic reprogramming in lung fibroblasts and highlight novel ATF4 and mTOR-dependent pathways that may be targeted to inhibit fibrotic processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA