RESUMEN
This work deals with the optimization of the culture conditions of Bacillus invictae AH1 in order to increase the production level of the proteolytic activity. Response-surface methodology (RSM) was applied for the most significant fermentation parameters (concentration of wheat bran and K2 HPO4 /KH2 PO4 ) that were earlier identified by Plackett-Burman Design from seven possible factors. A central composite design was used and the quadratic regression model of producing active protease was built. A maximum protease activity was reached and validated experimentally, using a maximum wheat bran concentration (50 g/L) with increased K2 HPO4 /KH2 PO4 concentration (2.275 g/L). Protease production obtained experimentally coincident with the predicted value and the model was proven to be adequate. Interestingly, the use of RSM increased the protease production by four times (7,000 U/mL) using a low-cost substrate and a culture time of 40 hr, as compared to the standard culture conditions. In the second part of this study, a H2 O2 -tolerant alkaline protease produced from B. invictae AH1 with a molecular mass of about 41 kDa, noted P3, was purified by successive steps of ultrafiltration, gel filtration and ion exchange chromatography. The K m and Vmax values of the purified protease using casein, as substrate, were about 4 mg/mL and 27 µM/min, respectively. The highest enzyme activity was found at pH 9.0 and a temperature of 60°C. In addition, the enzyme showed a quasi-total stability against H2 O2 (5% for 1 hr) and against most of the tested solid and liquid detergents, suggesting its eventual use in bio-detergent formulations.
Asunto(s)
Proteínas Bacterianas/aislamiento & purificación , Caseínas/química , Medios de Cultivo/química , Endopeptidasas/aislamiento & purificación , Peróxido de Hidrógeno/farmacología , Bacillus/enzimología , Proteínas Bacterianas/química , Cromatografía en Gel , Cromatografía por Intercambio Iónico , Medios de Cultivo/farmacología , Fibras de la Dieta/metabolismo , Endopeptidasas/química , Fermentación , Peróxido de Hidrógeno/efectos adversos , Propiedades de Superficie/efectos de los fármacosRESUMEN
The present work aims to study the simultaneous production of highly alkaline proteases and thermostable α-amylases by a newly isolated bacterium Bacillus mojavensis SA. The optimum pH and temperature of amylase activity were 9.0 and 55°C, respectively, while those of the proteolytic activity were 12.0 and 60°C, respectively. Both α-amylase and protease enzymes showed a high stability towards a wide range of pH and temperature. Furthermore, SA crude enzymes were relatively stable towards non-ionic (Tween 20, Tween 80 and Triton X-100) and anionic (SDS) surfactants, as well as oxidizing agents. Both activities were improved by the presence of polyethylene glycol 4000 and glycerol. Additionally, the crude enzymes showed excellent stability against various solid and liquid detergents. Wash performance analysis revealed that the SA crude enzymes exhibited a remarkable efficiency in the removal of a variety type of stains, such as blood, chocolate, coffee and oil. On the other side, SA proteases revealed a potential dehairing activity of animal hide without chemical assistance or fibrous proteins hydrolysis. Thus, considering their promising properties, B. mojavensis SA crude enzymes could be used in several biotechnological bioprocesses.
Asunto(s)
Bacillus/enzimología , Proteínas Bacterianas/metabolismo , Detergentes/farmacología , Endopeptidasas/metabolismo , Industrias , Proteolisis , alfa-Amilasas/metabolismo , Animales , Bacillus/aislamiento & purificación , Proteínas Bacterianas/antagonistas & inhibidores , Color , Estabilidad de Enzimas , Cabras , Concentración de Iones de Hidrógeno , Cinética , Metales/farmacología , Inhibidores de Proteasas/farmacología , Piel/metabolismo , Temperatura , alfa-Amilasas/antagonistas & inhibidoresRESUMEN
A newly alkaline proteases producing strain was isolated from sea water. The strain was identified as Bacillus invictae on the basis of biochemical characteristics and 16S rRNA sequence analysis. The crude protease activity showed an optimal activity at approximately 60°C and in wide pH interval ranging from 9.0 to 11.0. At least six clear caseinolytic protease bands were observed in a zymogram. Phenylmethylsulfonyl fluoride (PMSF), a serine-protease inhibitor, was found to inhibit completely the protease activity. The crude alkaline proteases showed high stability toward solid and liquid detergents. Furthermore, wash performance analysis revealed that the crude enzyme could effectively remove blood stain when added to commercial detergent. In addition, the crude proteases were found to be effective in the deproteinization of shrimp shell waste. The percent of protein removal after 3h of hydrolysis at 50°C with an E/S ratio of 10U/mg of protein or after fermentation by the strain were about 76% and 82%, respectively. Thus, the results of the present study showed that the crude proteases of B. invectae could be effectively used in several industrial applications, as an eco-friendly agent.
Asunto(s)
Bacillus/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Quitina/aislamiento & purificación , Detergentes/farmacología , Endopeptidasas/química , Endopeptidasas/metabolismo , Oxidantes/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Calcio/farmacología , Inhibidores Enzimáticos/farmacología , Estabilidad de Enzimas/efectos de los fármacos , Fermentación , Concentración de Iones de Hidrógeno , Metales/farmacología , Temperatura , ResiduosRESUMEN
Since chitin is closely associated with proteins, deproteinization is a crucial step in the process of extracting chitin. Thus, this research aimed to extract chitin from Portunus segnis and Penaeus kerathurus shells by means of crude digestive alkaline proteases from the viscera of P. segnis, regarding deproteinization step, as an alternative to chemical treatment. Casein zymography revealed that five caseinolytic proteases bands exist, suggesting the presence of at least five different major proteases. The optimum pH and temperature for protease activity were pH 8.0 and 60°C, respectively, using casein as a substrate. The crude enzymes extract was highly stable at low temperatures and over a wide range of pH from 6.0 to 12.0. The crude alkaline protease extract was found to be effective in the deproteinization of blue crab and shrimp shells, to produce chitin. The best efficiency in deproteinization (84.69±0.65% for blue crab shells and 91.06±1.40% for shrimp shells) was achieved with an E/S ratio of 5U/mg of proteins after 3h incubation at 50°C. These results suggest that enzymatic deproteinization of crab and shrimp wastes by fish endogenous alkaline proteases could be a potential alternative in the chitin production process.