Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brain Behav Immun ; 120: 571-583, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38986723

RESUMEN

Microglia are increasingly recognized to contribute to brain health and disease. Preclinical studies using laboratory rodents are essential to advance our understanding of the physiological and pathophysiological roles of these cells in the central nervous system. Rodents are nocturnal animals, and they are mostly maintained in a defined light-dark cycle within animal facilities, with many laboratories investigating the molecular and functional profiles of microglia exclusively during the animals' light (sleep) phase. However, only a few studies have considered possible differences in microglial functions between the active and sleep phases. Based on initial evidence suggesting that microglial intrinsic clock genes can affect their phenotypes, we sought to investigate differences in transcriptional, proteotype and functional profiles of microglia between light (sleep) and dark (active) phases, and how these changes are affected in pathological models. We found marked transcriptional and proteotype differences between microglia harvested from male mice during the light or dark phase. Amongst others, these differences related to genes and proteins associated with immune responses, motility, and phagocytosis, which were reflected by functional alterations in microglial synaptic pruning and response to bacterial stimuli. Possibly accounting for such changes, we found RNA and protein regulation in SWI/SNF and NuRD chromatin remodeling complexes between light and dark phases. Importantly, we also show that the time of microglial sample collection influences the nature of microglial transcriptomic changes in a model of immune-mediated neurodevelopmental disorders. Our findings emphasize the importance of considering diurnal factors in studying microglial cells and indicate that implementing a circadian perspective is pivotal for advancing our understanding of their physiological and pathophysiological roles in brain health and disease.


Asunto(s)
Ritmo Circadiano , Microglía , Animales , Microglía/metabolismo , Masculino , Ratones , Ritmo Circadiano/fisiología , Ratones Endogámicos C57BL , Fotoperiodo , Encéfalo/metabolismo , Adaptación Fisiológica/fisiología , Sueño/fisiología , Luz
3.
Nat Commun ; 11(1): 4990, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-33020478

RESUMEN

Neurons are highly compartmentalized cells with tightly controlled subcellular protein organization. While brain transcriptome, connectome and global proteome maps are being generated, system-wide analysis of temporal protein dynamics at the subcellular level are currently lacking. Here, we perform a temporally-resolved surfaceome analysis of primary neuron cultures and reveal dynamic surface protein clusters that reflect the functional requirements during distinct stages of neuronal development. Direct comparison of surface and total protein pools during development and homeostatic synaptic scaling demonstrates system-wide proteostasis-independent remodeling of the neuronal surface, illustrating widespread regulation on the level of surface trafficking. Finally, quantitative analysis of the neuronal surface during chemical long-term potentiation (cLTP) reveals fast externalization of diverse classes of surface proteins beyond the AMPA receptor, providing avenues to investigate the requirement of exocytosis for LTP. Our resource (neurosurfaceome.ethz.ch) highlights the importance of subcellular resolution for systems-level understanding of cellular processes.


Asunto(s)
Proteínas de la Membrana/metabolismo , Plasticidad Neuronal , Neuronas/metabolismo , Sinapsis/metabolismo , Animales , Membrana Celular/metabolismo , Células Cultivadas , Potenciales Postsinápticos Excitadores , Homeostasis , Potenciación a Largo Plazo , Mapas de Interacción de Proteínas , Transporte de Proteínas , Proteostasis , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA