Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur Heart J ; 39(10): 888-898, 2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29106524

RESUMEN

Aims: Human and mouse cardiac beta3-adrenergic receptors (beta3AR) exert antipathetic effects to those of beta1-2AR stimulation. We examined their role in modulating myocardial remodelling, particularly fibrosis in response to haemodynamic stress. Methods and results: Mice with cardiac myocyte-specific expression of beta3AR (ADRB3-tg) or tamoxifen-inducible homozygous deletion (c-Adrb3-ko, with loxP-targeted Adrb3) were submitted to transaortic constriction. A superfusion assay was used for proteomic analysis of paracrine mediators between beta3AR-expressing cardiac myocytes and cardiac fibroblasts cultured separately. We show that cardiac beta3AR attenuate myocardial fibrosis in response to haemodynamic stress. Interstitial fibrosis and collagen content were reduced in ADRB3-tg, but augmented in c-Adrb3-ko. ADRB3 and collagen (COL1A1) expression were also inversely related in ventricular biopsies of patients with valve disease. Incubation of cardiac fibroblasts with media conditioned by hypertrophic myocytes induced fibroblast proliferation, myo-differentiation, and collagen production. These effects were abrogated upon ADRB3 expression in myocytes. Comparative shotgun proteomic analysis of the myocyte secretomes revealed a number of factors differentially regulated by beta3AR, among which connective tissue growth factor [CTGF (CCN2)] was prominently reduced. CTGF was similarly reduced in stressed hearts from ADRB3-tg, but increased in hearts from c-Adrb3-ko mice. CTGF expression was mediated by reactive oxygen species production which was reduced by ADRB3 expression in vitro and in vivo. This antioxidant and anti-fibrotic effect involved beta3AR coupling to the neuronal isoform of nitric oxide synthase (nNOS) in cardiac myocytes, as both were abrogated upon nNOS inhibition or Nos1 homozygous deletion. Conclusion: Cardiac beta3AR protect from fibrosis in response to haemodynamic stress by modulating nitric oxide and oxidant stress-dependent paracrine signaling to fibroblasts. Specific agonism at beta3AR may offer a new therapeutic modality to prevent cardiac fibrosis.


Asunto(s)
Fibrosis , Cardiopatías , Miocitos Cardíacos , Estrés Oxidativo/fisiología , Comunicación Paracrina/fisiología , Receptores Adrenérgicos beta 3/metabolismo , Animales , Catecolaminas/metabolismo , Fibrosis/metabolismo , Fibrosis/prevención & control , Cardiopatías/metabolismo , Cardiopatías/prevención & control , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Óxido Nítrico/metabolismo
2.
Circulation ; 129(4): 451-62, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24190960

RESUMEN

BACKGROUND: ß1-2-adrenergic receptors (AR) are key regulators of cardiac contractility and remodeling in response to catecholamines. ß3-AR expression is enhanced in diseased human myocardium, but its impact on remodeling is unknown. METHODS AND RESULTS: Mice with cardiac myocyte-specific expression of human ß3-AR (ß3-TG) and wild-type (WT) littermates were used to compare myocardial remodeling in response to isoproterenol (Iso) or Angiotensin II (Ang II). ß3-TG and WT had similar morphometric and hemodynamic parameters at baseline. ß3-AR colocalized with caveolin-3, endothelial nitric oxide synthase (NOS) and neuronal NOS in adult transgenic myocytes, which constitutively produced more cyclic GMP, detected with a new transgenic FRET sensor. Iso and Ang II produced hypertrophy and fibrosis in WT mice, but not in ß3-TG mice, which also had less re-expression of fetal genes and transforming growth factor ß1. Protection from Iso-induced hypertrophy was reversed by nonspecific NOS inhibition at low dose Iso, and by preferential neuronal NOS inhibition at high-dose Iso. Adenoviral overexpression of ß3-AR in isolated cardiac myocytes also increased NO production and attenuated hypertrophy to Iso and phenylephrine. Hypertrophy was restored on NOS or protein kinase G inhibition. Mechanistically, ß3-AR overexpression inhibited phenylephrine-induced nuclear factor of activated T-cell activation. CONCLUSIONS: Cardiac-specific overexpression of ß3-AR does not affect cardiac morphology at baseline but inhibits the hypertrophic response to neurohormonal stimulation in vivo and in vitro, through a NOS-mediated mechanism. Activation of the cardiac ß3-AR pathway may provide future therapeutic avenues for the modulation of hypertrophic remodeling.


Asunto(s)
Ventrículos Cardíacos/patología , Miocitos Cardíacos/metabolismo , Neurotransmisores/farmacología , Óxido Nítrico Sintasa/fisiología , Receptores Adrenérgicos beta 3/metabolismo , Remodelación Ventricular/efectos de los fármacos , Angiotensina II/efectos adversos , Angiotensina II/farmacología , Animales , Células Cultivadas , GMP Cíclico/fisiología , Proteínas Quinasas Dependientes de GMP Cíclico/fisiología , Modelos Animales de Enfermedad , Ventrículos Cardíacos/fisiopatología , Humanos , Hipertrofia/inducido químicamente , Hipertrofia/patología , Hipertrofia/fisiopatología , Técnicas In Vitro , Isoproterenol/efectos adversos , Isoproterenol/farmacología , Masculino , Ratones , Ratones Transgénicos , Miocitos Cardíacos/patología , Miocitos Cardíacos/fisiología , Neurotransmisores/efectos adversos , Receptores Adrenérgicos beta 3/genética , Transducción de Señal/fisiología , Remodelación Ventricular/fisiología
3.
J Mol Cell Cardiol ; 52(2): 330-40, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21843527

RESUMEN

Cyclic guanosine 3'5'monophosphate (cGMP) is the common downstream second messenger of natriuretic peptides and nitric oxide. In cardiac myocytes, the physiological effects of cGMP are exerted through the activation of protein kinase G (PKG) signaling, and the activation and/or inhibition of phosphodiesterases (PDEs), providing an integration point between cAMP and cGMP signals. Specificity of cGMP signals is achieved through compartmentalization of cGMP synthesis by guanylate cyclases, and cGMP hydrolysis by PDEs. Increasing evidence suggests that cGMP-dependent signaling pathways play an important role in inhibiting cardiac remodeling, through the inhibition Ca(2+) handling upstream of pathological Ca(2+)-dependent signaling pathways. Thus, enhancing cardiac myocyte cGMP signaling represents a promising therapeutic target for treatment of cardiovascular disease. This article is part of a Special Issue entitled "Local Signaling in Myocytes."


Asunto(s)
GMP Cíclico/metabolismo , Miocitos Cardíacos/metabolismo , Óxido Nítrico Sintasa/metabolismo , Transducción de Señal , Animales , Vías Biosintéticas , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Hidrólisis , Contracción Miocárdica/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Remodelación Ventricular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA