Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 139(7): 2657-2663, 2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28142240

RESUMEN

The soft template method is broadly applied to the fabrication of hollow-structured nanomaterials. However, due to the instability and the typical spherical shape of these soft templates, the resultant particles have a spherical morphology with a wide size distribution. Herein, we developed a sustainable route to fabricate asymmetric flasklike hollow carbonaceous structures with a highly uniform morphology and a narrow size distribution using the soft template method. A dynamic growth mechanism induced by the synergetic interactions between template and biomass is proposed. The precursors (ribose) provide an acidic environment for sodium oleate during the hydrothermal process in which oleic acid nanoemulsions are initially formed and serve as both template and benign solvent for the amphiphilic derivatives of the precursor. Simultaneously, the cosurfactant P123 facilitates the uniform dispersion of the nanoemulsion and is believed to cause the carbonaceous shells to rupture, providing openings through which the intermediates can enter. These subtle interactions facilitate the formation of the flasklike, asymmetric, hollow, carbonaceous nanoparticles. Furthermore, this unique structure contributes to the high surface area (2335 m2 g-1) of the flasklike carbon particles, which enhances the performance of supercapacitors. These findings may open up an exciting field for exploring anisotropic carbonaceous nanomaterials and for understanding the related mechanisms to provide guidance for the design of increasingly complex carbonaceous materials.

2.
Nat Commun ; 13(1): 5077, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-36038582

RESUMEN

Water evaporation is a natural phase change phenomenon occurring any time and everywhere. Enormous efforts have been made to harvest energy from this ubiquitous process by leveraging on the interaction between water and materials with tailored structural, chemical and thermal properties. Here, we develop a multi-layered interfacial evaporation-driven nanogenerator (IENG) that further amplifies the interaction by introducing additional bionic light-trapping structure for efficient light to heat and electric generation on the top and middle of the device. Notable, we also rationally design the bottom layer for sufficient water transport and storage. We demonstrate the IENG performs a spectacular continuous power output as high as 11.8 µW cm-2 under optimal conditions, more than 6.8 times higher than the currently reported average value. We hope this work can provide a new bionic strategy using multiple natural energy sources for effective power generation.


Asunto(s)
Suministros de Energía Eléctrica , Agua
3.
Chem Commun (Camb) ; 51(64): 12859-62, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26169442

RESUMEN

Graphitic carbon nanotubes (GCNTs) were fabricated from in situ produced graphitic carbon by calcining biomass/melamine/Ni(NO3)2·6H2O. Ni-based hybrids (NiOx@GCNTs) displayed superior catalytic capacity in direct dehydrogenation of ethylbenzene. The specific reaction rate can reach up to 8.1 µmol m(-2) h(-1), and unprecedented stability was obtained over 165 h without any activation process.

4.
Nanoscale ; 6(22): 13510-7, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25267462

RESUMEN

Hydrothermal carbonization (HTC) of carbohydrate is an interesting candidate for the preparation of carbon materials, as it provides an easy, inexpensive and environmental friendly route. However, it is difficult to prepare porous carbon materials by a straight HTC process. Herein, the solubilising technology of micelles was introduced to direct the HTC of fructose by using an amphiphilic block copolymer, poly-(4-vinylpyridine)-block-poly-(ethylene glycol) (P4VP-PEG), as a structure-directing agent. By this strategy, hierarchical porous carbon materials with tunable properties were prepared. It was found that P4VP-PEG micelles could solubilize fructose and confine the formation of primary carbon domains during a sol-gel process. And the micelle size could be adjusted easily by changing the preparation conditions. Accordingly, the particle size of the obtained carbon materials was effectively tuned from 20 to 100 nm by the direction of the primary micelle size. After calcination, the hierarchical porous carbon materials were evidenced as effective electrode materials for supercapacitor with a capacitance of ∼197 F at 1 A g(-1), which was almost four times higher than the carbon materials prepared by a straight HTC process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA